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Validation of acoustic-analogy predictions for sound radiated
by turbulence
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~Received 7 July 1998; accepted 5 October 1999!

Predicting sound radiated by turbulence is of interest in aeroacoustics, hydroacoustics, and
combustion noise. Significant improvements in computer technology have renewed interest in
applying numerical techniques to predict sound from turbulent flows. One such technique is a hybrid
approach in which the turbulence is computed using a method such as direct numerical simulation
~DNS! or large eddy simulation~LES!, and the sound is calculated using an acoustic analogy. In this
study, sound from a turbulent flow is computed using DNS, and the DNS results are compared with
acoustic-analogy predictions for mutual validation. The source considered is a three-dimensional
region of forced turbulence which has limited extent in one coordinate direction and is periodic in
the other two directions. Sound propagates statistically as a plane wave from the turbulence to the
far field. The cases considered here have a small turbulent Mach number so that the source is
spatially compact; that is, the turbulence integral scale is much smaller than the acoustic
wavelength. The scaling of the amplitude and frequency of the far-field sound for the problem
considered are derived in an analysis based on Lighthill’s acoustic analogy. The analytical results
predict that the far-field sound should exhibit ‘‘dipole-type’’ behavior; the root-mean-square
pressure in the acoustic far field should increase as the cube of the turbulent Mach number. The
acoustic power normalized by the turbulent dissipation rate is also predicted to scale as turbulent
Mach number cubed. Agreement between the DNS results and the acoustic-analogy predictions is
good. This study verifies the ability of the Lighthill acoustic analogy to predict sound generated by
a three-dimensional, turbulent source containing many length and time scales. ©2000 American
Institute of Physics.@S1070-6631~00!02501-0#

I. INTRODUCTION

A fundamental concern in aeroacoustics is the prediction
of the far-field sound radiated by turbulence. Advanced nu-
merical methods for this purpose have received attention re-
cently. Computing the far-field sound by DNS~direct nu-
merical simulation! on a very large computational domain
which includes both the turbulent source and the acoustic far
field is unfortunately very expensive and problematic for
even relatively simple flows. An alternative strategy is to
calculate the sound using a hybrid approach in which the
turbulence is computed using a method such as DNS or LES
~large eddy simulation!, and the far-field sound is calculated
using an acoustic analogy. Application of the hybrid ap-
proach requires understanding and accurately capturing the
behavior of the dominant acoustic sources in a particular
flow. Invalid approximations to the source term in the acous-
tic analogy can lead to large errors in the predicted sound.1

The objective of this study is to evaluate the hybrid approach
for predicting sound from broadband turbulence at low tur-
bulent Mach number using the Lighthill acoustic analogy.

Lighthill 2 introduces the idea of calculating the far-field
sound generated by unsteady flow with an acoustic analogy.
In Lighthill’s analogy, the fully nonlinear problem is taken to
be analogous to the problem of sound propagation in a linear
acoustic medium at rest subject to an external forcing that
represents the turbulent source. Starting with Lighthill’s

acoustic analogy, Proudman3 derives an equation for the ra-
diated acoustic power per unit mass of the turbulence,P
5aeMt

5. Heree is the mean rate of turbulent energy dissi-
pation per unit mass,Mt is the turbulent Mach number, and
the Proudman constant,a, is of order 10. In Proudman’s
analysis, the equation fora is derived assuming Gaussian
statistics with normal joint probability distributions for the
turbulent velocities and their first two time derivatives.

The following studies use the hybrid approach to calcu-
late the sound from turbulence and compare acoustic-
analogy predictions with theoretical and experimental re-
sults. Sarkar and Hussaini4 compute the sound from decaying
isotropic turbulence using a hybrid DNS/Lighthill acoustic-
analogy approach. Witkowskaet al.5 also compute the sound
from isotropic turbulence for forced and unforced cases us-
ing both DNS and LES to evaluate the turbulent source in the
Lighthill acoustic analogy. These simulations of isotropic
turbulence have periodic boundary conditions in all direc-
tions. Since there is no far field in these simulations, the
radiated sound cannot be computed directly; however, the
statistics of the source term in the acoustic analogy can be
obtained. Lilley6 derives an alternative analytical method of
determininga and evaluates his analytical results using sta-
tistics of the Lighthill source obtained from the DNS data-
bases of Sarkar and Hussaini4 and Dubois.7 These studies all
show that the hybrid acoustic-analogy method is a feasible
approach in that DNS/LES can be used to compute the
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acoustic source and thereby obtain sound radiated by isotro-
pic turbulence.

Studies have also been performed to validate various
forms of the acoustic analogy for different flow configura-
tions by comparing the sound calculated from direct compu-
tations or exact analytical solutions with acoustic-analogy
predictions. The emphasis in almost all of these studies is to
investigate the sound from large coherent structures rather
than the effects of smaller turbulence scales on the radiated
sound. Mitchell, Lele, and Moin8 and Colonius, Lele, and
Moin9 study the sound radiated by a compressible co-
rotating vortex pair and the scattering of sound waves from a
compressible viscous vortex, respectively. Colonius, Moin,
and Lele10 validate the Lilley acoustic analogy for a forced,
two-dimensional, compressible shear layer by comparing
DNS results with acoustic-analogy predictions. The flow
studied by Coloniuset al.10 is not turbulent. Vortex roll-up
and pairing occur at fixed locations~stationary acoustic
sources!, and the sound is dominated by these forced vortex
dynamics. Mitchell, Lele, and Moin11 validate the Lighthill
acoustic analogy by comparison with DNS results for axi-
symmetric, nonturbulent subsonic and supersonic jets. As in
the study by Coloniuset al.,10 the only acoustic sources con-
sidered are the large coherent structures considered to be the
dominant acoustic sources in supersonic jets.

In recent work, Bastinet al.12 calculate the sound from a
subsonic turbulent plane jet using the hybrid approach. In
this work, the jet flow is computed using semideterministic
modeling~SDM!, and the far-field sound is predicted using
Lighthill’s acoustic analogy. As discussed by Bastinet al., a
problem with SDM for this application is that only the large
coherent structures are computed; the smaller acoustically
active scales of the turbulence are unresolved. Freund13 per-
forms a DNS of a jet with Mach number 0.9 and Reynolds
number 3600 and analyzes the acoustic sources in the jet. In
Freund’s work, the Lighthill source is computed from the
DNS results using Fourier methods.

The objective of this study is to validate the Lighthill
acoustic analogy by comparison with a direct computation of
far-field sound for a three-dimensional, turbulent flow. Vali-
dation using experimental results is problematic since the
equivalent acoustic source in a turbulent flow is difficult to
characterize completely and includes significant contribu-
tions from multipoles of different orders that invalidate
simple scaling laws for the acoustic power and spectra. The
approach in this study is to devise a problem in which the
equivalent acoustic source has well-defined properties, de-
rive scaling laws for the radiated sound using the acoustic
analogy, compute the sound in a full DNS on a large domain
which includes the turbulence and extends to the acoustic far
field, and validate acoustic-analogy predictions by compari-
son with DNS results. Unlike previous simulations4,5 of
sound radiated by isotropic turbulence, a nonperiodic direc-
tion is allowed so that the far-field sound radiating in that
direction can be explicitly computed in the DNS.

The source is a three-dimensional region of forced tur-
bulence which is periodic in thex and z directions and has
limited extent in they direction. The turbulence is embedded
in a large domain otherwise at ambient conditions. The do-

main extends to the acoustic far field. Since the source has
finite extent only in they direction, acoustic wave propaga-
tion is statistically one-dimensional. The plane-mean sound
propagates from the turbulence to the far field in they direc-
tion. Here plane-mean quantities are defined as^•&
5(1/Axz)*Axz

(•)dxdz, whereAxz is the cross-sectional area
normal to they direction. There is no far field in thex or z
directions. The turbulence is forced in time to prevent the
rapid decay of the plane-mean sound seen in the case where
the source is a region of decaying isotropic turbulence. The
forcing is accomplished without introducing fluctuating dila-
tation.

Full DNS are performed for two cases withMt!1. Here
Mt is the turbulent Mach number. Using the Lighthill acous-
tic analogy, the scaling of the amplitude of the plane-mean
sound with turbulent Mach number is derived. Analytical
results predict that the amplitude of the plane-mean sound
should scale with turbulent Mach number as sound from a
distribution of dipoles. The turbulence in the problem con-
sidered is a dipole-type source. The ‘‘quadrupole-type’’ be-
havior derived by Lighthill for a region of turbulence limited
in extent in all three coordinate directions does not apply in
this problem since the turbulence has limited extent only in a
single direction. These analytical results are derived in Sec.
II. Numerical techniques used in the DNS are discussed in
Sec. III. In Sec. IV, the DNS results are discussed and com-
pared with acoustic-analogy predictions. Conclusions are
given in Sec. V.

II. ANALYTICAL RESULTS

A. Derivation

For a region of unsteady flow in free space which is
limited in extent in all three coordinate directions, Lighthill
derives

]2r8

]t2 2c0
2¹2r85

]2Ti j

]xi]xj
, ~1!

where the Lighthill stress tensor,Ti j 5(ruiuj )2t i j 1(p8
2c0

2r8)d i j is the difference between stresses in the real flow
and stresses in the uniform acoustic medium at rest. Herer is
the density,u5(u,v,w) is the unsteady source velocity,c0 is
the ambient sound speed, and

t i j 52mS ei j 2
1

3
ekkd i j D5mS ]ui

]xj
1

]uj

]xi
D2

2

3
m

]uk

]xk
d i j , ~2!

is the viscous stress tensor. In Eq.~2!, m is the dynamic
viscosity,ei j is the rate of strain tensor, andekk is the diver-
gence of the velocity field. The superscript prime notation
denotes fluctuations relative to the ambient quantity. Equa-
tion ~1! is exact for an arbitrary fluid motion. Assuming neg-
ligible viscous stresses and heat transfer between regions in-
side and outside the flow and low turbulent Mach number,
the termTi j can be approximated asTi j ;r0(uiuj ), wherer0

is the ambient density. For the case with no mean flow,Ti j

;r0ui8uj8 .
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For a source periodic in thex andz directions and lim-
ited in extent in they direction, Eq.~1! is plane averaged to
give

]2^r&8
]t2 2c0

2 d2^r&8
dy2 5^T&8. ~3!

Here ^•& denotes averages in thexz plane, and T8
5r0]2(ui8uj8)/]xi]xj . Taking Fourier transforms in time,
Eq. ~3! becomes

d2^r& 8̂
dy2 1kA

2^r& 8̂52
^T& 8̂

c0
2 , ~4!

where^r& 8̂(y,v) and ^T& 8̂(y,v) are the Fourier transforms
of ^r&8 and^T&8, respectively, andkA5v/c0 is the acoustic
wave number. Here the Fourier transform in time is defined
by

f̂ ~y,v!5E f ~y,t !eivtdt ~5!

and

f ~y,t !5
1

2p E f̂ ~y,v!e2 ivtdv. ~6!

The one-dimensional Green’s function for Eq.~4! is

G~y,j!5
1

2ikA
eikAuy2ju, ~7!

so the solution to Eq.~4! is

^r& 8̂~y,v!52
1

2ikAc0
2 E eikAuy2ju^T& 8̂~j,v!dj. ~8!

Retaining terms ofO(y21) for sound in the far field

^r& 8̂~y,v!52
eikAy

2ikAc0
2 E ^T& 8̂~j,v!e2 ikAjdj. ~9!

The integral in Eq.~9! is the Fourier transform iny of

^T& 8̂ at frequencyv and wave number2kA

E ^T& 8̂~j,v!e2 ikAjdj5^T& 8̃~ky52kA ,v!. ~10!

Here the Fourier transform in both they direction and time is
defined by

Ã~ky ,v!5E A~y,t !ei ~kyy1vt !dydt ~11!

and

A~y,t !5
1

2p E Ã~ky ,v!e2 i ~kyy1vt !dkydv. ~12!

Thus, for a given frequencyv, only wave numbers withkA

5v/c0 in the source contribute to the far-field sound. This
condition is required because the turbulence is limited in

extent in they direction; ^T& 8̂(y,v)→0 for largey. Conse-
quently, density fluctuations must satisfy the acoustic disper-
sion relationship in the far field.

In this problem,̂ T& 8̂5r0^uiuĵ&8, i j is dominated by the

term r0^v2& 8̂,yy . Assuming^T& 8̂;r0^v2& 8̂,yy , Eq. ~9! be-
comes

^r& 8̂~y,v!5
1

2ikAc0
2 ei ~v/6!yr0kA

2^v2& 8̃~2kA ,v!. ~13!

Taking the inverse Fourier transform in time of Eq.~13!
gives

^r&8~y,t !

r0
52

1

4pc0
3 E e2 iv@ t2~y/c0!#iv^v2& 8̃~2kA ,v!dv.

~14!

Using

2 iv^v2&̃~kA ,v!5K ]v 2̃

]t L 8
~2kA ,v!, ~15!

in Eq. ~14! and redefiningt2y/c0 to be the new variablet,
wheret is the retarded time, gives

^r&8~y,t1y/c0!

r0
5

1

4pc0
3 E e2 ivtK ]v 2̃

]t L 8
~2kA ,v!dv.

~16!

Equation~16! predicts the plane-mean sound radiated by a
low-Mach-number turbulent source which is periodic in thex
andz directions and limited in extent in they direction. The
far-field sound,̂ p&85c0

2^r&8, is determined by the space-
time characteristics of the term]^v2&8/]t in the turbulent
source. In Eq.~16!, the acoustic analogy is written in terms
of time derivatives instead of space derivatives. Lighthill2

advocates the use of the time-derivative form because the
time delay,y/c0 , between source emission and observer re-
ception can be neglected in subsequent analysis.

For a low-Mach-number source, the change in acoustic
wave number for two cases with different values ofMt is
DkA5kA22kA15Dv/c05DMt!1. For DMt!1, Eq. ~16!
gives

^r&8~y,t1y/c0!

r0
5OF l T

c0
3 K ]v2

]t L G5OFvT
2l T

c0
3tT

G5O~Mt
3!. ~17!

Here l T , vT , andtT; l T /vT are the characteristic turbulence
length, velocity, and time scales, respectively, andMt

;vT /c0 . In obtaining Eq.~17!, a self-similar spectrum of
^]v2/]t& with l T and tT is assumed.

B. Predicted scaling of source and sound frequency

For the DNS cases considered, the ratio of the frequency
of the term]^v2&8/]t in the two DNS cases is given by

vSr5
vS,1

vS,2
5

Mt,1

Mt,2
5M tr . ~18!

Since the acoustic analogy predicts that the source fre-
quency,vA , is equal tovS , the acoustic frequency, for a
spatially compact source, the acoustic frequencies in the two
DNS cases are related by
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vAr5
vA,1

vA,2
5

Mt,1

Mt,2
5M tr . ~19!

Here the source turbulent Mach number ratio isM tr

5Mt,1 /Mt,2 . The subscripts 1 and 2 are used to denote val-
ues of variables for the two cases. Note that Eqs.~18! and
~19! give the scaling of the source and sound frequency for
the specific cases considered in the DNS withl T15 l T2 and
c015c02.

1. Predicted scaling of source and sound amplitude

For the spatially compact cases considered, the scaling
of density fluctuations in the turbulence is obtained from the
Poisson equation for the incompressible pressure

¹2pI 852r0ui , j
I 8 uj ,i

I 8 . ~20!

Using Eq.~20! to estimate plane-mean density fluctuations in
the turbulent source gives

^r&S8

r0
5O~Mt

2!. ~21!

Using Eq.~17! to estimate plane-mean density fluctuations in
the acoustic far field gives

^r&A8

r0
5O~Mt

3!. ~22!

The results of our analysis predict that the plane-mean sound
radiated by the turbulence in this problem is equivalent to
sound from a distribution ofdipole sources. The single time
derivative on the right-hand-side of Eq.~16! is also indica-
tive of a dipole-type source.

For the purpose of evaluating these scaling predictions,
considering the statistics of the plane-mean dilatation fluc-
tuations,^d&8, is preferable to considering the statistics of
the plane-mean density or pressure fluctuations because the
low-frequency drift in the mean pressure complicates the
computation of̂ p&8 and^r&8. A similar low-frequency drift
in the far-field mean pressure was observed by Colonius
et al.10 and Mitchellet al.11 The plane-mean dilatation fluc-
tuations are related to the plane-mean density fluctuations by

^d& 8̂5
iv

r0
^r& 8̂. ~23!

From Eq.~21!, in the turbulent source

^d&S8

d0
5O~Mt

3!. ~24!

From Eq.~22!, in the far field

^d&A8

d0
5O~Mt

4!. ~25!

Hered05c0 / l T .

C. Radiated acoustic power

An analysis, guided by that of Proudman,3 is performed
to determine the scaling of the acoustic power per unit mass,
PA , radiated by the turbulence in this problem. Proudman
derives

PA}eMt
5, ~26!

for sound radiated by a region of isotropic turbulence limited
in extent in all three coordinate directions starting from
Lighthill’s results for the far-field sound radiated by a
quadrupole-type source.

For a plane wave, the acoustic intensity, the average rate
at which energy is transported across a unit area normal to
the propagation direction, is

I 5
c0

3^r& rms
2

r0
5

^p& rms
2

r0c0
. ~27!

Here ^•& rms denotes the root-mean-square~rms! value ob-
tained from the time history of the plane-mean quantity.

As derived in Sec. II for the dipole-type source in this
problem

^p& rms

p0
5O~Mt

3! ~28!

or

^p& rms
2 }r0

2c0
4Mt

6. ~29!

For sound propagating as a plane wave, the radiated acoustic
power is

PV5
^p& rms

2 L2

r0c0
}r0c0

3Mt
6L2. ~30!

The total acoustic power per unit mass radiated by a volume
of turbulence,V;L2l T , is

PA5
PV

r0V
}

c0
3Mt

6

l T
}

vT
3Mt

3

l T
. ~31!

Here l T is the integral length scale in the propagation direc-
tion, andL2 is the cross-sectional area normal to the direc-
tion of plane-wave propagation. Equation~31! can be written
in terms of the mean rate of turbulent energy dissipation per
unit mass,e;vT

3/ l T

PA}eMt
3. ~32!

Equation~32! gives the total acoustic power per unit mass
radiated by a dipole-type region of turbulence.

III. NUMERICAL METHODS

A. Governing equations

The equations solved in the DNS are the three-
dimensional, compressible, unsteady Navier–Stokes equa-
tions written for an ideal, Newtonian fluid. The governing
equations are normalized using reference quantities which
are denoted by subscriptR. Dimensional quantities are de-
noted by superscript* . The nondimensional density, velocity,
and pressure arer5r* /rR , u5u* /uR , and p5p* /pR ,
where pR5rRuR

2. The nondimensional temperature isT
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5T* /TR, whereTR5pR /(rRRg), andRg is the specific gas
constant. Nondimensional length and time arex5x* /LR ,
and t5t* /tR . The equation of state for an ideal gas isp
5rT.

In nondimensional form, the continuity equation is

]r

]t
1

]

]xi
~rui !50, ~33!

and the conservative form of the momentum conservation
equation is

]

]t
~rui !1

]

]xj
~ruiuj !52

1

gMR
2

]p

]xi
1

1

Re

]t i j

]xj
, ~34!

where

t i j 5mS ]ui

]xj
1

]uj

]xi
D2

2

3
m

]uk

]xk
d i j . ~35!

The convective term in the momentum conservation equation
is written in the equivalent nonconservative form

]

]xj
~ruiuj !5

1

2 Fuj

]

]xj
~rui !1rui

]uj

]xj
1

]

]xj
~ruiuj !G . ~36!

As discussed by Feiereisenet al.,14 discretizing this noncon-
servative form of the momentum equation using symmetric
spatial differences improves the discrete conservation prop-
erties of the numerical scheme. The nondimensional energy
conservation equation is

]p

]t
1uj

]p

]xj
1gp

]uj

]xj
5

g

RePr

]

]xj
S k

]T

]xj
D

1
g~g21!MR

2

Re
F, ~37!

where

F5t i j

]ui

]xj
, ~38!

is the viscous dissipation function. In Eq.~37!, Pr5nR /aR is
the reference Prandtl number. In Eqs.~34! and ~37!, Re
5uRLR/nR is the reference Reynolds number, andMR

5uR /AgRgTR is the reference Mach number. Hereg is the
specific heat ratio,mR , nR , aR , and kR are the reference
dynamic viscosity, kinematic viscosity, thermal diffusivity,
and thermal conductivity, respectively. All reference quanti-
ties are constant in space and time. The assumption of con-
stant fluid properties is appropriate since the effect of any
temperature gradients on the fluid properties is negligible for
the low-Mach number flows considered.

B. Discretization

Both first and second spatial derivatives in thex, y, andz
directions are calculated using sixth-order compact
schemes.15 The solution is advanced in time using a low-
storage, third-order Runge–Kutta scheme.16 This scheme
provides sufficient accuracy while minimizing storage re-
quirements. In the low-storage scheme, only two arrays

rather than four are required for each flow-field variable;
therefore, the memory required is significantly reduced.

C. Initial condition

The initial source is a region of fully developed, three-
dimensional, isotropic turbulence generated in a previous
simulation using the algorithm discussed in Sarkar and
Hussaini4 and used in Whitmire and Sarkar.17 The algorithm
was originally developed to investigate compressibility ef-
fects in isotropic turbulence by Erlebacheret al.18 and homo-
geneous shear turbulence by Sarkar.19 The initial turbulence
has microscale Reynolds number Rel534. The skewness of
]u/]x is 20.45 in the initial field, in agreement with values
obtained in previous experiments and simulations of nonlin-
early evolving isotropic turbulence. The geometry of the
source and acoustic far field is shown in Fig. 1. The turbu-
lence is centered abouty5Ly/2, whereLy is the length of the
computational domain in they direction.

D. Boundary conditions

Boundary conditions are periodic in thex and z direc-
tions and nonreflecting in they direction. Since the plane-
mean sound propagates from the source to the far field in the
y direction, truncation of the open physical domain and
implementation of nonreflecting boundary conditions is re-
quired. The nonreflecting boundary conditions are imple-
mented using the perfectly matched layer~PML! buffer zone
technique introduced by Berenger20 for solution of Max-
well’s equations in electromagnetics. This technique has
been used in fluid dynamic applications by researchers in-
cluding Hu21 and Hayderet al.22 In the PML method, the
equations solved are designed so that outgoing waves satis-
fying the linearized Euler equations are damped exponen-
tially to zero in the buffer regions. The PML approach allows
use of periodic derivative schemes to calculate spatial de-
rivatives in they direction.

Although these boundary conditions minimize reflec-
tions, they do not completely eliminate spurious high-
frequency waves. High-frequency oscillations are generated
when the pressure waves generated during the initial tran-
sient exit boundaries normal to they direction. A suitably

FIG. 1. Schematic of acoustic wave propagation problem for three-
dimensional source of forced turbulence.
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small hyperviscosity dissipation term is added in the Navier–
Stokes equations to damp these high-frequency waves. The
hyperviscosity term is proportional to fourth spatial deriva-
tives, and therefore filters any high-frequency oscillations
which may contaminate the solution in the interior of the
computational domain specifically and strongly. The hyper-
viscosity term for the conservation equations given in Sec.
III A is

2eES Dx4
]4q

]x4 1Dy4
]4q

]y4 1Dz4
]4q

]z4 D , ~39!

where

q5F r
ru
rv
rw
p

G . ~40!

The tunable coefficient,eE50.25, in the hyperviscosity term
is chosen to be sufficiently small so that the energy-
containing and dissipation ranges are not significantly af-
fected. The damping effect of the hyperviscosity on the tur-
bulence is smaller than that of the physical viscosity for
length scales withl .2Dx and is larger than the physical
viscosity for smaller length scales. The boundary condition
scheme is successful; no significant reflections are observed
at the boundaries normal to they direction.

E. Grid stretching

To resolve the disparate length scales of the turbulence
and the acoustic field while minimizing the number of grid
points, the grid is stretched in they direction. The grid is
designed so that the spacing is uniform withDymin5a in the
turbulent source, stretched between the source and into the
far field, and uniform again withDymax5b in the far field.
The maximum stretch factor,r 51.05, is sufficiently small so
that no significant numerical dissipation is introduced by the
grid stretching. Herer is the ratio of adjacent intervals be-
tween grid points. The grid has uniform spacing,Dx5Dz
5a, in the x and z directions. Discretization on a uniform
grid which extends to the acoustic far field would require a
6423700 grid containing almost three million grid points
instead of the more reasonable 6423170 stretched grid used.

F. Forcing scheme

Preliminary studies show that the amplitude of the plane-
mean sound decreases too rapidly to allow statistical analysis
for the case where the source is a region of decaying turbu-
lence. A unique forcing scheme is devised to maintain en-
ergy in the turbulence so that predictions of the Lighthill
acoustic analogy for the statistics of the plane-mean sound
can be evaluated. In this forcing scheme, an energy spectrum
typical of fully developed isotropic turbulence is maintained.
The turbulence is forced so that the source turbulent Mach
number is constant in time~after an initial transient!. No
significant dilatation ~larger amplitude ‘‘monopole-type’’

sound! is introduced by the forcing method; therefore, spu-
rious noise that would dominate the predicted dipole-type
sound is avoided.

A region of forced turbulence which meets these require-
ments is obtained by forcing the incompressible component
of the velocity field,uI , so that the incompressible energy
spectrum is invariant with time for a range of forced wave
numbers. The velocity field can be decomposed into two
components,u5uI1uC, where the incompressible compo-
nent,uI , is solenoidal and contains all the vorticity

¹•uI50, ¹3uI5¹3u, ~41!

and the compressible component,uC, contains all the dilata-
tion but none of the vorticity,

¹•uC5¹•u, ¹3uC50. ~42!

To avoid the introduction of significant dilatation,uC is not
forced. Only the incompressible velocity component,uI , is
forced. The range of forced wave numbers iskmin<kr

<kmax. Here kmin54, kmax512, andkr is the radial wave
number. In this forcing scheme, the low-wave number scales
of the flow that are frequency matched with the far-field
sound are not forced directly sincekmin.kA5v/c0.

Two computational grids are required to efficiently
implement the forcing scheme. One grid is the stretched grid
described in Sec. III E. This stretched grid contains 642

3170 points and extends from the turbulence to the acoustic
far field. The second grid is a smaller uniform grid contain-
ing 6423128 points with spacingDx5Dy5Dz52p/64.
The uniform spacing on the smaller grid is the same as the
uniform spacing in the turbulence on the larger stretched
grid. The smaller grid contains the entire turbulent source.

The incompressible velocity field is forced at the end of
each time step. The total velocity field is first transferred
from the stretched to the smaller uniform grid,u→u* . The
velocity field on the smaller grid is truncated and damped so
u* →0 at the boundaries normal to they direction to obtain
the periodic boundary conditions required to perform Fourier
transforms iny. The total velocity field on the smaller uni-

form grid is then transformed into spectral space,u* →u*̂ ,
and decomposed into its incompressible and compressible

parts, u*̂→u*̂ I ,u*̂C. The incompressible velocity field is

forced, u*̂ I(kr)→u*̂F
I (kr). At the end of each time step,

u*̂ I(kr) with kr in the range of forced wave numbers is mul-
tiplied by a constantb(t). The value ofb is determined from
the condition that the turbulent kinetic energy must be the
same at the beginning and end of each time step. Thus, the
energy lost due to viscous dissipation is replenished by the
forcing. The forced and unforced incompressible velocity

fields, u*̂F
I and u*̂ I , are then transformed from spectral to

physical space and transferred to the larger stretched grid.
The total velocity field in physical space is calculated asu
5uC1uF

I . Note thatuC is not altered by the forcing scheme;
no spurious dilatation is introduced.

The unique forcing scheme developed and implemented
is extremely successful. For each of the two cases consid-
ered, the source turbulent Mach number after the initial tran-
sient, Mt f , is constant in time. No significant dilatation is
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introduced either through the two interpolations between the
stretched and uniform grids or during the forcing

IV. NUMERICAL RESULTS

A. DNS results for the flow evolution

The two cases considered have turbulent Mach numbers
Mt f 150.125 andMt f 250.075. Here the subscriptf is used to
denote final, steady values after the initial transient. Each of
the two cases requires 30 MW of memory and 150 CPU
hours on the Cray C-90. In each case, the solution of the
three-dimensional, compressible Navier–Stokes equations is
computed for 8200 time intervals ofDt50.0072, and a time
series of lengthnTA with n535 is used to evaluate the sta-
tistics of the turbulence and the sound. Heren is the number
of time periods for each case, andTA is the length of a single
time period. The time period of both the turbulence and the

sound scales as the eddy turnover time;n1.8 for the case
with Mt f 150.125, and n2.5 for the case withMt f 2

50.075. The acoustic wavelength is resolved with a mini-
mum of 10 points per wavelength. In this section, nondimen-
sional variables are as defined in Sec. III A. In Figs. 2–8, the
vorticity, dilatation, velocity, length, time, and frequency as
defined in Sec. III A are further normalized using length
scalel T and velocity scalec0 . These normalized quantities
are v15v/(c0 / l T), d15d/(c0 / l T), v15v/c0 , Y1

5y/ l T , andZ15z/ l T , t15t/( l T /c0), and f 15 f /(c0 / l T).
Figure 2 shows contours of fluctuating vorticity,v8, and

dilatation,d, in the turbulence and acoustic far field at time
t15338 after the initial transient has exited the computa-
tional domain. Figures 2~a! and 2~b! are in the turbulence,
and Figs. 2~c! and 2~d! are in the acoustic far field. The
figures shown are for the case withMt f 150.125. Contours
are qualitatively the same for the case withMt f 250.075.

FIG. 2. Contours of vorticity magnitude and dilatation fluctuations generated by a three-dimensional region of forced turbulence. All figures give instanta-
neous levels att15338 forMt f 150.125.~a! and~b! are in the turbulence, and~c! and~d! are in the acoustic far field. In~c! and~d!, the sound is propagating
downward towardsy150. The computational domain extends fromy150 to y15Ly

15171, and the turbulence is centered abouty15Ly
1/2.
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During the initial transient, the turbulence spreads in
time asb;AnTt, wherenT; l TvT is the eddy viscosity. As
discussed in Sec. III F, the dimension of the turbulence in the
y direction is constrained to be no larger than the dimension
of the smaller grid used to force the turbulence. After the
initial transient, the extent of the turbulence in they direction
is b15b/ l T532. The turbulence is decorrelated inx, y, and
z. Integral length scales in thex, y, and z directions arel x

. l y. l z.0.4. The ratio of the integral length scale to the
extent of the turbulence in thex, y, andz directions isl x /L
.0.06, l y /b.0.03, andl z /L.0.06. HereL5Lx5Lz is the
dimension of the computational domain in thex andz direc-
tions. The Taylor microscale isl15l/ l T.0.35. Herel T

. l x ,l y ,l z . The magnitude of all components of the Rey-

nolds stress anisotropy,bi j , is less than 0.02 in the core of
the turbulent source and increases to 0.1 near the source
boundaries normal to they direction. Because of the isotro-
pic forcing scheme used, the turbulence does not deviate
much from isotropy.

FIG. 4. Time evolution of turbulent Mach number in three-dimensional
source of forced turbulence.

FIG. 5. Time-rms plane-mean dilatation in the turbulent source.

FIG. 6. Lighthill acoustic analogy plane-mean source term in three-
dimensional, bounded region of forced turbulence:~a! Time history~b! Fou-
rier transform in time~unscaled! ~c! Fourier transform in time~normalized
using acoustic-analogy predictions!. HereM tr* 5Mt f 1 /Mt f .

FIG. 3. Time evolution of plane-mean dilatation fluctuations at two different
observation planes in the acoustic far field forMt f 150.125 ~a! curves not
shifted in time~b! curve aty2.y1 shifted byd/c0 , whered5y22y1 .
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Although the incompressible field in the turbulence is
constrained in they direction, the compressible field has no
such constraints. The acoustic wavelength is determined by
the requirement,kA5v/c0 . The ratio l T /lA for the cases
with Mt f 150.125 andMt f 250.075 is 0.044 and 0.028, re-
spectively. Sincel T /lA!1, the source is spatially compact.
The two buffer regions used to implement the nonreflecting
boundary conditions extend fromy150 – 27 and y1

5144– 171. These buffer regions are not shown in Fig. 2. As
shown in Fig. 2~c!, vorticity fluctuations are essentially zero
outside the turbulence. Figure 2~d! shows that the acoustic
fluctuations propagate to the far field. The increase in length
scales from the turbulence to the acoustic far field can be
seen by comparing Figs. 2~b! and 2~d!.

Figure 3~a! shows the time evolution of the plane-mean
dilatation at two planes in the acoustic far field for the case
with Mt f 150.125. Figure 3~b! shows the curves in Fig. 3~a!
with the curve fory2.y1 shifted by d/c0 where d is the
distance in they direction between the two planes. As shown
in these figures, the plane-mean sound propagates as a plane
wave from the turbulence to the acoustic far field. The am-
plitude of the far-field, plane-mean sound is not a function of
y for this case with one-dimensional wave propagation. Both
the shape and amplitude of the plane-mean sound are nearly
identical ~but shifted in time byd/c0) at different planes in
the acoustic far field. The result that the sound waves travel
with the speed of sound indicates that spurious numerical
dispersion is insignificant. The transition from the near field
to the far field is identified as the location where the shape
and amplitude of the plane-mean sound become nearly iden-
tical at various observation planes. This occurs aty/lA

.0.5. Figures 3~a! and 3~b! also show that no significant
reflections in the plane-mean sound are generated at the non-
reflecting boundaries. Fort1.59, any reflections from the
domain exit would have propagated into the test region and
would be seen as differences in the shape and amplitude of
the plane-mean sound at different planes.

Figure 4 shows the time evolution of the source turbu-
lent Mach number for the two simulations. After an initial
transient, the turbulent Mach number for each case and,
therefore, the turbulent Mach number ratio,M tr

5Mt f 1 /Mt f 251.67, is constant in time. The decrease inMt f

to its final steady value during the initial transient is due to
the increase in the volume of the turbulent region; the total
kinetic energy in the turbulent region with volumeV(t)

5L2b(t) is constant in time both during and after the initial
transient.

B. Comparison of acoustic-analogy predictions with
DNS results

1. Evaluation of scaling predictions for Lighthill
source term in turbulence

Figure 5 shows the time-rms plane-mean dilatation,
^d&S,rms8 in the turbulent source for the two DNS cases. The
time-rms dilation is calculated as a running average

^d& rms8 ~ t !5A1

t Et525

t

^d&8~y,t !dt. ~43!

After an initial transient,̂ d&S,rms8 is constant for each case.
To check the prediction of Eq.~24! for the scaling of dilata-
tion fluctuations in the turbulence,̂d&S8/d05O(Mt

3), the
scaling exponent defined as

FIG. 7. Time-rms plane-mean dilatation in the acoustic far field.

FIG. 8. Plane-mean dilatation in acoustic far field generated by three-
dimensional, bounded region of forced turbulence:~a! Time history~b! Fou-
rier transform in time~unscaled! ~c! Fourier transform in time~normalized
using acoustic-analogy predictions!. HereM tr* 5Mt f 1 /Mt f .
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xS5
ln~^d&S1,rms8 /^d&S2,rms8 !

ln~Mt f 1 /Mt f 2!
, ~44!

is determined from the curves in Fig. 5. Analysis predicts
xS53.0, and DNS results givexS53.1. Agreement between
the analysis and the DNS results is good. Note that the time-
rms quantities include contributions from the many frequen-
cies present in the turbulence.

Figure 6 shows the time evolution of]^v2&8/]t for the
two DNS cases. A range of frequencies with varying ampli-
tudes are present in the turbulence. The time series for the
case with the higherMt f has higher fluctuation amplitude
and contains a wider range of frequencies. To quantify these
observations, the Fourier transform in time of]^v2&8/]t is
obtained for each case. Plots of the Fourier transform of the

source term,]^v2&̂8/]t(y, f ), as a function of frequency,f,
are shown in Fig. 6~b!. Each curve shown is an average of
the Fourier transforms at five planes in the turbulent source.
Figure 6~b! shows that a range of frequencies with varying
amplitudes are present in the Lighthill source term. The am-
plitude of ]^v2&8/]t is larger for all frequencies for the case
with higher Mt f . The dominant frequency is higher for the
case with Mt f 150.125 compared to the case withMt f 2

50.075.
Figure 6~c! shows the curves in Fig. 6~b! normalized

using the predicted scaling with turbulent Mach number. The

normalized amplitude is]^v2&̂8/]t/M tr*
3, and the normalized

frequency isf M tr* . Here M tr* 5Mt f 1 /Mt f is M tr* 51.67 for
the case withMt f 250.0.075 andM tr* 51.00 for the case with
Mt f 150.125. The normalization collapses the spectra as
shown in Fig. 6~c!, indicating the validity of the analytical
predictions that the frequency of the source term scales as
Mt , and the amplitude scales asMt

3.

2. Evaluation of scaling predictions for the radiated
far-field sound

Figure 7 shows the time-rms plane-mean dilatation,
^d&A,rms8 , at a plane in the acoustic far field for the two DNS
cases. The time-rms value is calculated as in the turbulent
source using the definition in Eq.~43!. After an initial tran-
sient, ^d&A,rms8 is constant in time. To check the prediction
given by Eq.~25! for the scaling of dilatation fluctuations in
the far field,^d&A8 /d05O(Mt

4), the scaling exponent defined
as

xA5
ln~^d&A1,rms8 /^d&A2,rms8 !

ln~Mt f 1 /Mt f 2!
, ~45!

is determined from the curves in Fig. 7. Analysis predicts
xA54.0, and DNS results givexA54.2. Agreement between
the DNS results and the acoustic-analogy predictions is
good.

Figure 8~a! shows the time evolution of̂d&A8 at a plane
in the acoustic far field. The Fourier transform in time of the

far-field sound,̂ d&̂A8 (y, f ), as a function off is shown in Fig.
8~b!. Almost identical spectra are obtained at any plane in
the far field since both the amplitude and shape of the plane-
mean sound are nearly identical~but shifted! at different
planes. Figure 8~b! shows that a range of frequencies with

varying amplitudes are present in the plane-mean sound. The
amplitude of^d&A8 is larger for all frequencies for the case
with higherMt f . The dominant frequency is also higher for
the case withMt f 150.125 compared to the case withMt f 2

50.075.
Figure 8~c! shows the curves in Fig. 8~b! normalized

using predictions of the Lighthill acoustic analogy for the
scaling of the amplitude and frequency of the far-field,
plane-mean sound with turbulent Mach number. The normal-

ized amplitude iŝ d&̂A8 /M tr*
4, and the normalized frequency

is f M tr* . As predicted by the Lighthill acoustic analogy, this
normalization collapses the spectra as shown in Fig. 8~c!,
indicating the validity of the analytical predictions that the
frequency of the plane-mean sound scales asMt , and the
amplitude scales asMt

4 for a range of frequencies.

3. Evaluation of scaling predictions for radiated
acoustic power

The predicted scaling of the radiated acoustic power de-
rived in Sec. II C for a dipole-type source,PA}eMt

3, @Eq.
~32!# is evaluated using the DNS results. Combining Eqs.
~30! and~32!, the acoustic power per unit mass of the turbu-
lent source is

PA5aeeMt
35

^p& rms
2

r0
2c0l T

, ~46!

whereae is a constant independent of turbulent Mach num-
ber. The right-hand-side of Eq.~46! is rewritten in terms of
^d& rms instead of^p& rms because, as discussed in Sec. II B,
the low-frequency drift in the mean pressure complicates the
computation of̂ p& rms. So, Eq.~46! becomes

PA}
^d& rms

2 c0
3l T

vT
2 . ~47!

To check the predicted scaling of the radiated acoustic
power for a dipole-type source of turbulence, the ratio
ae1 /ae2 is evaluated using the DNS results. Hereae1 and
ae2 are the proportionality constants for the cases with
Mt f 150.125 andMt f 250.075, respectively. From the DNS
results

ae1

ae2
51.2. ~48!

Thus, the quantityae does not vary significantly with turbu-
lent Mach number in the DNS. These results verify the pre-
dicted scaling of the radiated acoustic power per unit mass,
PA}eMt

3, for a dipole-type source.

V. CONCLUSIONS

The ability of the Lighthill acoustic analogy to predict
the sound radiated by a three-dimensional region of turbu-
lence is evaluated by comparing DNS results with acoustic-
analogy predictions. In the DNS, the three-dimensional, un-
steady, compressible Navier–Stokes equations are solved on
a large computational domain which includes the turbulence
and extends to the acoustic far field. The turbulence is lim-
ited in extent in one coordinate direction and is periodic in
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the other two directions. An analysis based on Lighthill’s
acoustic analogy shows that the turbulent region considered
in this problem is a dipole-type source; the rms pressure, rms
dilatation, and peak acoustic frequency are predicted to scale
as Mt

3, Mt
4, and Mt , respectively. Agreement between the

DNS results and the acoustic-analogy predictions is good.
DNS results also confirm that the radiated acoustic power per
unit mass scales asPA}eMt

3 as derived for a dipole-type
source. Note that turbulent flows most often are a combina-
tion of multipoles of different order; acoustic-analogy vali-
dation using experimental data is more difficult than the vali-
dation using DNS results performed here.

Results show that critical numerical issues are resolved
appropriately in the DNS. The computational domain is
stretched in the direction of sound propagation to minimize
the number of grid points required. Nonreflecting boundary
conditions are implemented without introducing any signifi-
cant reflections in the sound even though the acoustic density
fluctuation normalized by the mean density isO(1024).
Forcing the turbulence without introducing larger amplitude
monopole-type sound is a significant challenge. A unique
forcing scheme is developed to force the incompressible ve-
locity field without forcing the compressible velocity field in
order to maintain an energy spectrum typical of fully devel-
oped turbulence. Finally, applying the Lighthill acoustic
analogy is not trivial. Careful evaluation of the appropriate
source term in the acoustic analogy is essential to the predic-
tion of the dipole-type sound observed here.

A DNS which includes both the turbulence and the
acoustic far field is computationally expensive and problem-
atic, even for the simple problem considered here. In fact, the
difficulty and cost of implementing full DNS to calculate the
far-field sound convincingly demonstrates the advantages of
a hybrid approach. This study validates predictions of the
Lighthill acoustic analogy for sound radiated by three-
dimensional, broadband turbulence.
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