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Internal gravity waves excited by the turbulent motions in a bottom Ekman layer
are examined using large-eddy simulation. The outer flow is steady and uniformly
stratified while the density gradient is set to zero at the flat lower wall. After initializing
with a linear density profile, a mixed layer forms near the wall separated from the
ambient stratification by a pycnocline. Two types of internal wave are observed.
Waves with frequencies larger than the free-stream buoyancy frequency are seen in
the pycnocline, and vertically propagating internal waves are observed in the outer
layer with characteristic frequency and wavenumber spectra. Since a signature of the
pycnocline waves is observed in the frequency spectrum of the mixed layer, these
waves may affect the boundary-layer turbulence. The dominant outer-layer waves
have a group velocity directed 35−60◦ from the vertical axis, which is consistent with
previous laboratory studies. The energy flux associated with the radiated waves is small
compared to the integrated dissipation in the boundary layer, but is of the same order
as the integrated buoyancy flux. A linear model is proposed to estimate the decay in
wave amplitude owing to viscous effects. Starting from the observed wave amplitudes
at the bottom of the pycnocline, the model prediction for the spectral distribution of
the outer layer wave amplitude compares favourably with the simulation results.

1. Introduction
When turbulence is present in a stably stratified fluid, internal gravity waves

are often created and radiate energy away from the source region. Turbulence-
generated internal waves have been observed in a variety of flows: wakes (Bonneton,
Chomaz & Hopfinger 1993; Gourlay et al. 2001; Spedding 2002; Diamessis,
Domaradzki & Hesthaven 2005), shear layers (Sutherland & Linden 1998; Sutherland,
Caulfield & Peltier 1994; Basak & Sarkar 2006), in the lee of topography (Aguilar
& Sutherland 2006), grid-generated turbulence (Linden 1975; E & Hopfinger 1986;
Dohan & Sutherland 2003, 2005) and gravity currents (Flynn & Sutherland 2004).
The turbulence that generates the internal waves may be associated with an essentially
well-mixed region (e.g. grid turbulence) or a stratified region (e.g. wakes and shear
layers). This study will be focused on an example of the former case. Turbulence-
generated internal waves may be important to the flow evolution since they are
capable of extracting energy and momentum from a forced region, propagating
to another nearby or remote location, and depositing their energy and momentum
through a variety of possible mechanisms (e.g. wave breaking, wave/wave interactions,
critical-layer absorption).

In the ocean and in the atmosphere, one important site of intense turbulence is near
boundaries. The problem of a turbulent region driven by internal waves incident on
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a boundary has been considered in several studies (e.g. Slinn & Riley 1998; Thorpe
2001; D’Asaro 1982), but it appears that the problem of internal waves generated by
boundary-layer turbulence has not been invesitgated. Since boundary regions are a
hotspot of kinetic energy dissipation (Gregg et al. 1999; Garrett & St Laurent 2002),
if the waves are able to extract even a fraction of the kinetic energy from near the
boundary and transfer it to a less energetic region, they may play an important role
in the global energy budget.

There is some evidence suggestive of turbulence-generated internal waves in the
observations of Moum et al. (1992) from the upper equatorial ocean. A weakly
stratified turbulent surface layer was diurnally forced by a combination of a wind
stress and surface heat flux. Large-amplitude internal waves were observed in the
thermocline with a narrow range of wavenumbers. These waves were observed during
times of strong wind and unstable convective forcing, suggesting that they may have
been forced by turbulent motions near the sea surface. In addition, the turbulent
dissipation rate in the thermocline was found to be correlated to the level of internal
wave activity.

There is evidence that internal gravity waves are important to atmospheric dynamics
(see Fritts & Alexander 2003 for a review). Gravity waves affect the large-scale
dynamics in the mesosphere and stratosphere through the so-called ‘wave-drag’
exerted on the mean flow (Holton & Alexander 2000). Sources of turbulence-
generated internal waves in the atmosphere include convective motions and shear
instabilities (Fritts & Alexander 2003). Buhler, McIntyre & Scinocca (1999) and
Buhler & McIntyre (1999) considered the generation of internal waves by a localized
unstable shear layer at the top of the jet stream. They used ray tracing to estimate
the transmission of waves into the mesosphere and concluded that these waves may
be an important source term in the local momentum budget.

The importance of turbulence-generated internal waves to the growth of a mixed
region was considered by Linden (1975). An oscillating grid was used to generate a
turbulent mixed layer above a density-stratified region. As the mixed layer deepened,
a pycnocline developed with a density gradient up to three times the value in the outer
region. Internal waves were observed propagating away from the mixed region when
the outer layer had a linear stratification instead of being homogeneous. The relative
importance of the internal waves was quantified by comparing the rate of change of
potential energy to the internal wave energy flux, and it was found that the presence
of propagating internal waves may reduce the mixed-layer growth by up to 50%. A
different conclusion was reached by E & Hopfinger (1986) who also considered shear-
free grid-generated turbulence. With two initial conditions, a uniformly stratified fluid
and a two-layer system, they found that the rate of mixed-layer growth depends on
the density jump at the interface, but not on the density structure away from the
mixed region. Based on this observation, and an estimate of the internal wave energy
flux relative to the turbulence flux, they concluded that radiated internal waves, which
exist only in the continuously stratified case, do not significantly affect the growth of
the mixed layer.

As a mixed region forms in a stratified fluid, it is common for a region of strong
density gradient, or pycnocline, to form at the edge of the mixed layer. Since the
density gradient in the pycnocline forms a local maximum, it is possible for high-
frequency waves to become isolated in this layer. Piat & Hopfinger (1981) considered
a turbulent boundary layer in a fluid with a two-layer thermal structure. They found
that the mean shear and root mean square velocity increased at the thermal interface.
Internal waves travelling along the interface had a time-lag correlation between
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vertical velocity and temperature fluctuation that was 90◦ out of phase. The authors
reported that the waves occurred in bursts generated by the interactions of turbulent
eddies with the interface. The frequency of the observed waves was approximately
equal to the buoyancy frequency at the interface.

Since the turbulent region that provides energy to the wave field is composed
of many spatial and temporal scales, it is perhaps surprising that the vertically
propagating turbulence-generated internal waves are often associated with a relatively
narrow frequency range that is proportional to the local buoyancy frequency. The
angle made by the group velocity vector and the vertical direction is set from the
dispersion relation, which for non-rotating linear internal gravity waves is ω =N cos Θ ,
where ω is the intrinsic frequency, N is the background buoyancy (or Brunt–Väisälä)
frequency, and Θ is the angle between the wavenumber vector and the horizontal axis.
Therefore, waves with a particular frequency are also associated with a characteristic
angle of propagation. Previous studies of turbulence-generated internal waves have
generally found that 35◦ <Θ < 60◦. Several explanations have been given for this
frequency selection as discussed below.

Sutherland & Linden (1998) conducted a laboratory experiment with stratified fluid
flowing over a vertical barrier. A turbulent shear layer formed in the wake of the
barrier and internal waves were observed propagating away from the shear layer
through the uniformly stratified surrounding fluid. The largest-amplitude waves were
associated with an angle of propagation in the range 45◦ <Θ < 60◦. The authors
noted that the vertical component of the group velocity is maximum for waves with
Θ = 45◦ (for a fixed wavelength) and suggested that if turbulence in the mixed region
had a uniform frequency distribution, waves with this angle may optimally transport
energy away from the mixed region. They also suggested that the radiated internal
waves with Θ = 45◦ may modify the mean flow so as to favour generation of waves
with their own frequency.

An alternative hypothesis for the narrow frequency range observed in laboratory
experiments was proposed by Sutherland (2001). He derived stability criteria for
internal waves for two types of instability. For low-frequency waves, convective
overturning provides the most stringent stability criteria based on the wave amplitude.
For high-frequency waves the lowest critical wave amplitude is based on resonant
interactions between the wave and its wave-induced mean flow, a process that steepens
the waves until they become statically unstable. Based on the predicted stability
criteria for these two mechanisms, it was shown that the largest critical amplitude
corresponds to waves propagating at Θ =45◦. Sutherland (2001) hypothesized that
since other angles would become unstable at a lower amplitude, these instability
mechanisms may explain the frequency selection observed in laboratory experiments.

Dohan & Sutherland (2003) described laboratory experiments using an oscillating
grid to create a turbulent mixed region in a uniformly stratified tank. A novel
visualization technique was used in order to examine the internal waves in detail.
The background buoyancy frequency was varied by over a factor of 4 and in all
cases, the frequency of the waves was such that the vertical angle of propagation was
in the range 42◦ <Θ < 55◦. The authors explored two explanations for the narrow
range of observed propagation angles. The first was that waves at frequencies other
than those observed would become unstable through the mechanisms proposed by
Sutherland (2001). Since the amplitudes of the waves were only about 25% of that
predicted for instability, this explanation was deemed unlikely. They concluded that a
better explanation was a resonant feedback between the waves and turbulence. Since
waves at 35◦ have a maximum vertical energy flux and waves at 45◦ have a maximum
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Figure 1. Internal wave excitation from a turbulent boundary layer. The group and phase
velocity are shown relative to the free stream.

momentum flux, they speculated that waves near these frequencies may extract energy
from the turbulent region in an optimal way. Dohan & Sutherland (2005) compared
a two-dimensional numerical simulation to laboratory experiments similar to their
previous study. Turbulence in the simulations was generated by a small-scale forcing
term with a randomized Gaussian spectrum in the horizontal and vertical directions,
in addition to a large-scale counter-rotating vortex pair. The characteristic length
scale of the turbulence-generated internal waves was between those associated with
the large- and small-scale forcing. The range of Θ in the simulations was similar to
that observed in the laboratory experiments.

Keeler, Bondur & Gibson (2005) reported surface manifestations of internal
waves generated by turbulent motions above a submerged municipal wastewater
outfall. Based on observations from previous laboratory experiments, the authors
hypothesized that the internal waves propagated upwards with Θ ≈ 45◦. Gibson et al.
(2006) proposed an explanation for the selection of high-frequency waves. First,
energy is transferred from turbulent motions to internal waves through fossilization
at the buoyancy frequency. These waves do not propagate vertically since the vertical
component of the group velocity for waves at ω = N vanishes. Inertial-vortex forces
were then invoked to explain a reduction in the frequency of the waves which are
then able to propagate vertically. The length scale associated with these waves was
predicted to be proportional to the Ozmidov scale at the time of fossilization.

The present study is based on simulations of a bottom Ekman layer with a uniform
density stratification outside the boundary layer (figure 1). The focus of this paper will
be on the internal waves excited by turbulent motions in the bottom boundary layer.
While previous laboratory and two-dimensional numerical studies have considered
the generation of internal waves from a well-mixed turbulent region, this has not yet
been examined in the case of boundary layers. The three-dimensional structure of the
waves will be examined, and compared with the general characteristics of turbulence-
generated internal waves previously observed in laboratory experiments. An attempt
to explain the amplitude and frequency of the radiated waves in our simulations will
be offered. The importance of the radiated internal waves to the dynamics of the
boundary layer will also be addressed by comparing the internal wave energy flux to
the integrated turbulent dissipation rate and the integrated buoyancy flux.

2. Formulation
The turbulent boundary layer that is considered here is generated when a steady

flow in geostrophic balance encounters a smooth flat wall. Near the wall, where
the turbulent viscosity contributes to the leading-order momentum balance, the flow
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Simulation Ri∗ N∞/f Re∗ Pr

1 0 0 960
1h 0 0 1920
2 100 10 960

52h 100 10 1920
3 1000 31.6 960
3h 1000 31.6 1920

Table 1. Physical parameters: subscript h in the case number denotes
a higher Reynolds number.

turns in the direction of the pressure gradient, forming the well-known Ekman spiral.
A constant density gradient is applied as the upper boundary condition while the
density gradient is set to zero at the wall. Since a large-eddy simulation is used
to examine this flow, the filtered governing equations are numerically integrated in
time. Using the friction velocity, u∗, the turbulent Ekman-layer depth, δ = u∗/f , and
the outer-layer density gradient, dρ/dz∞, the filtered non-dimensional incompressible
governing equations can be written:

∂u
∂t

+ u · ∇u = − 1

ρ0

∇p′ + f k̂ × (U∞ î − u) − Ri∗
ρ ′

ρ0

k̂ +
1

Re∗
∇2u − ∇ · τ , (2.1)

∂ρ ′

∂t
+ u · ∇ρ ′ =

1

Re∗Pr
∇2ρ ′ − ∇ · λ, (2.2)

∇ · u = 0, (2.3)

where

Re∗ =
u∗δ

ν
, Ri∗ = − g

ρ0

dρ

dz ∞

δ2

u2
∗

=
N2

∞
f 2

, P r =
ν

κ
. (2.4)

Here, ρ0 is the constant density which has been used to apply the Boussinesq
approximation, ν is the molecular kinematic viscosity, κ is the molecular diffusivity,
f is the Coriolis parameter, N∞ is the free-stream buoyancy frequency, and τ and λ
are the subgrid-scale stress and density flux, respectively. The parameters considered
in this study are given in table 1. Density changes are assumed to be caused by
temperature variation in water, motivating the choice of Prandtl number, Pr = 5. We
have performed simulations at three different values of Ri∗, equivalent to changing
the free-stream temperature gradient, and at two Reynolds numbers. For the cases
with Ri∗ = 0, the temperature acts like a passive scalar since the temperature and
momentum equations are decoupled. For comparison with oceanographic conditions,
observations of the bottom boundary layer over the Oregon shelf by Perlin et al.
(2007) provide estimates of Re∗ =60 000 and N∞/f = 75. Therefore, the Reynolds
number considered in the present study is much smaller than that found in the ocean
whereas the stratification levels are comparable.

The vertical domain size is 8δ, significantly larger than the boundary-layer thickness
which is about 0.5δ for an unstratified turbulent Ekman layer (Coleman, Ferziger &
Spalart 1990). The large vertical domain provides a region above the boundary layer
where the internal wave propagation can be examined. In order to allow waves to exit
freely from the top of the domain, an open boundary condition has been used with
a combination of a sponge layer and a radiation condition (Klemp & Durran 1983).
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The horizontal boundaries are periodic, which is consistent with the assumption that
the flow is statistically homogeneous in the horizontal plane. A horizontal domain
size of 4δ has been chosen to be sufficiently large that the autocorrelation in the
turbulent boundary layer is small at the scale of the domain size, limiting the energy
in spurious box modes.

In order to simulate this flow at larger Reynolds numbers than would otherwise
be possible, a near-wall model large-eddy simulation (NWM-LES) has been used.
The LES is based on a mixed model that consists of eddy viscosity and scale-similar
components, and uses the dynamic procedure of Germano et al. (1991) to evaluate
the Smagorinsky coefficient. This subgrid-scale model has been shown to perform
well for stratified flow (Armenio & Sarkar 2002; Taylor, Sarkar & Armenio 2005).
A near-wall model alleviates the need to resolve the viscous scales near the wall,
allowing a coarser grid than would otherwise be possible. The near-wall model that
is used here is similar to that developed by Schumann (1975), Grotzbach (1987), and
Piomelli et al. (1989), but has been modified for rotating flow. It assumes that the
magnitude of the horizontal velocity near the wall follows a logarithmic law which
has been confirmed by the authors using direct numerical simulation (DNS). We
have found that the near-wall model performs well at the Reynolds numbers given
in table 1, but does not adequately capture the mean velocity profile for simulations
at a very large geophysically-relevant Reynolds number on a coarse grid. Spectral
collocation is used in the horizontal directions, while a second-order finite difference
method on a staggered grid is used in the vertical direction. The grid that has been
used for these simulations is 96 × 96 × 112 cells for a domain size of 4δ × 4δ × 8δ in
the x-, y- and z-directions, respectively, and 16 grid points dedicated to the sponge
region from 8δ −10δ. The simulations are continued for about tf = 30 time units, and
the time step is tf = 10−3, so that the integration time is quite long, about 30 000 time
steps. The integration time in buoyancy time units corresponds to Nt =300 when
Ri∗ = 100, and Nt = 950 when Ri∗ = 1000.

3. Summary of the boundary-layer evolution
In order to initialize each case, a simulation of an unstratified turbulent Ekman

layer was conducted until the mean velocity profile reached a steady state. The three-
dimensional velocity field from the unstratified simulation was then used as the initial
velocity field in the stratified simulations, while the temperature field was initialized
with a linear undisturbed profile. In each case, the temperature profile in the boundary
layer is mixed rapidly during the initial stage, and the thickness of the boundary layer
is strongly influenced by the strength of the imposed statification. The development of
the temperature gradient is shown in figure 2 where angle brackets denote an average
over the horizontal plane. As the mixed layer grows in time, a pycnocline forms above
the boundary layer with a mean temperature gradient up to twice the initial value.
Dashed lines in figure 2 show the location where the temperature gradient is equal to
the outer value, thereby illustrating the upper and lower bounds of the pycnocline.

After about tf = 6 time units, each case reaches a quasi-steady state where the
mean velocity profile is steady, and the mixed layer grows slowly in time. This slow
growth of the temperature field is persistent even at late times. Figure 3 shows the
plane averaged velocity and temperature profiles at tf = 20. Only simulations with
Re∗ = 960 are shown, but these profiles are similar at the larger Reynolds number.
The thickness of the bottom mixed layer decreases with increasing Ri∗, as the amount
of energy required to mix the profile to a given height increases. The velocity profiles
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Figure 2. Spin-up of the plane averaged temperature gradient for Re∗ =960 (a) Ri∗ = 100,
(b) Ri∗ = 1000. Profiles of the temperature gradient are shown every tf = 1 and offset by
2 × d〈θ〉/dz∞. Dashed lines show the locations where d〈θ〉/dz = 1 representing the edges of the
pycnocline.

are also affected by Ri∗. The mean velocity gradient in the pycnocline increases with
increasing stratification and most of the Ekman transport (

∫
〈v〉 dz′) occurs in the

mixed layer. It can be shown that the Ekman transport balances the streamwise wall
stress in the vertically integrated momentum equation. Therefore, if the wall stress is
constant (which it is in our simulations) but the Ekman-layer depth decreases, the
magnitude of 〈v〉 should increase accordingly.

4. Observations of turbulence-generated internal waves
The internal wave field generated by the boundary layer at quasi-steady state is

shown through instantaneous x–z slices of w′ and ∂w′/∂z in figure 4 for simulation 3.
We have found that the vertical velocity field contains a significant non-propagating
component in the outer layer and that ∂w′/∂z more clearly shows the phase lines of
the propagating waves which slant up and to the left. For internal waves, the group
velocity, cg , is perpendicular to the wavenumber vector and parallel to the phase
lines. Note that the direction of the phase lines is the same as would be seen for
topographically generated waves with a flow in the positive x-direction. Figure 4(b)
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Figure 3. Plane averaged profiles at tf =20 and Re∗ =960 (a) velocity, (b) temperature and
(c) square of buoyancy frequency. For clarity, the Ri∗ = 100 profile is not shown in (a). The
grey line in (b) shows the initial linear temperature profile. —–, Ri∗ = 0; - - -, 100; − · −, 1000.
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Figure 4. Instantaneous vertical velocity, Ri∗ = 1000, Re∗ = 960, tf = 20. At this time, the
maximum temperature gradient in the pycnocline occurs at about 0.275 δ. (a) w′, (b) dw′/dz.

shows that just above the pycnocline, for 0.5 <z/δ < 1.5, there are internal waves with
phase lines forming a larger angle with the vertical direction. Since the dispersion
relation for linear internal waves is ω = N cosΘ , these waves have a lower frequency.

Since the only source of internal wave generation is the turbulent boundary layer,
any waves external to the boundary layer and with a downward group velocity must be
due to spurious reflections. The level of energy reflected from the upper boundary can
be quantified by decomposing the spectrum into upward and downward propagating
parts. This is done here by observing ∂w′/∂z in a coordinate frame moving with U∞
and transforming the time series for 1 <z/δ < 8 into frequency and wavenumber space.
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Figure 5. (a) Upward and (b) downward propagating wave components of ∂w′/∂z in a
frame moving with U∞, for Ri∗ = 1000 and Re∗ = 960.

Since internal waves with an upward propagating group velocity are associated with
downward pointing phase lines, the amplitudes in quadrants II and IV of frequency,
vertical wavenumber space (with ω > 0, m < 0, and ω < 0, m > 0, respectively) are
retained for the upward propagating part. An inverse Fourier transform then yields
the time series in physical space for internal waves with upward energy propagation
(Pinkel 2005). To obtain the reflected waves, the procedure is the same with quadrants I
and III kept. The decomposition into waves with upward and downward propagating
energy is shown in figure 5 for simulation 3. About 3% of the total (∂w′/∂z)2

field consists of downward propagating waves. A similar decomposition for the w′

field (not shown) demonstrates that about 6% of the vertical kinetic energy ( 1
2
w′2)

is associated with downward energy propagation. This demonstrates that the open
boundary condition used at the top of the domain performs well.

The most energetic waves observed in the pycnocline and the outer layer are
qualitatively different. We can examine the contributions to the internal wave energy
flux by considering the phase angle of the p′, w′ co-spectrum. With the co-spectrum,
Cp′w′(k, z, t) and quadrature spectrum, Qp′w′(k, z, t) defined as the real and imaginary
parts, respectively, of ∑

l

ŵ′(k, l, z, t)p̂′∗(k, l, z, t), (4.1)

the phase angle, γ (k, z, t) can be defined by

tan(γ ) =
Qp′w′

Cp′w′
. (4.2)

Here, k and l are the wavenumbers in the x and y directions and ∗ denotes the
complex conjugate. The absolute value of the phase angle is shown for simulation
3 in figure 6. The phase angle is averaged over data at several times and linearly
weighted by the absolute value of the energy at the corresponding k and t ,

Ep′w′(k, z, t) =
∑

l

p̂′ŵ′∗ + p̂′∗ŵ′. (4.3)

The energy flux is dominated by the low wavenumbers (not shown). When |γ | =0,
p′ and w′ are exactly in phase, while the energy flux, 〈p′w′〉 is directed upward for
0 � |γ | < π/2 and downward for π/2 < |γ | � π. Figure 6 shows that |γ | is generally
small in the outer layer. In the pycnocline, the most energetic modes with low
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Figure 6. Phase angle of the w′ and p′ cospectrum for Ri∗ = 1000, Re∗ = 960. - - -, z/δ = 0.3
(pycnocline); —–, z/δ = 5.9 (outer layer).
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Figure 7. Spectral amplitudes of the vertical velocity in the pycnocline and in the boundary
layer, Ri∗ = 1000, Re∗ = 960. �, z/δ = 0.1438; �, 0.26.

wavenumbers have |γ | ≈ π/2, so that p′ and w′ are about 90◦ out of phase and the
vertical energy flux is small. The phase lag observed in the pycnocline is consistent with
horizontally propagating interfacial waves. In laboratory experiments of a turbulent
boundary layer capped by a temperature interface, Piat & Hopfinger (1981) observed
a 90◦ phase lag between the vertical velocity and temperature at the interface, which
is consistent with the present results if the waves are hydrostatic.

Frequency spectra obtained from the time history have been examined for dynamical
coupling between different regions in the flow. Figure 7 shows the spectum for
simulation 3 at two vertical locations: at z/δ =0.14 in the upper portion of the mixed
layer where N/f =5.7, and at z/δ = 0.26 in the pycnocline where N/f = 36.9. The
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Figure 8. Vertical energy flux normalized by (a) the integrated dissipation, and (b) the
integrated buoyancy flux with Re∗ =960. In order to ensure that assumptions made to derive
(4.4) hold, the first height shown is at the top of the pycnocline where d 〈ρ〉 /dz = dρ/dz∞. —–,
Ri∗ = 100; - - -, 1000.

spectra were obtained using a time series in a coordinate frame moving with the local
mean flow and the spectral amplitudes were averaged over the horizontal plane. The
energy is large over a wide range of frequencues at the lower location, signifying
broadband turbulence. Both spectra have a maximum amplitude at frequencies near
the buoyancy frequency in the pycnocline. At z/δ = 0.14, this peak frequency lies
outside the frequency band, f <ω <N , for locally propagating internal waves. Since
we expect nonlinear interactions between different frequencies to be strong in the
turbulent boundary layer, the dynamics of turbulence in the mixed layer may be
directly influenced by fluctuations in the pycnocline.

It is desirable to determine the relative importance of the radiated internal waves to
the energetics of the turbulent boundary layer. We can assess this by comparing the
size of the terms in the turbulent kinetic energy budget. At steady state, the turbulent
kinetic energy budget integrated to a height z outside the boundary layer is:∫ z

0

P dz′ −
∫ z

0

ε dz′ − 〈p′w′〉 − Ri∗

∫ z

0

〈w′ρ ′〉 dz′ = 0, (4.4)

where P and ε are the turbulent production and dissipation, respectively, and it has
been assumed that z is sufficiently large that the turbulent transport and the viscous
diffusion are negligible. Here, 〈·〉 denotes an average over a horizontal plane and time,
during a period when the fluctuations are quasi-steady. Figure 8(a) shows that the
third term in (4.4), the vertical energy flux, is of the order of 1% of the integrated
dissipation. Therefore, the energy radiated away from the boundary layer in the form
of internal waves is negligible compared to the total energy extracted from the mean
flow.

While the energy flux associated with radiated waves may be small compared to the
integrated turbulent dissipation, the waves may still extract enough energy from the
boundary layer to affect the evolution of the background potential energy. Since
the kinetic energy is transferred to potential energy through the buoyancy flux, it
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Figure 9. Characteristics of waves with the largest amplitude of ∂w′/∂z for Re∗ = 960. Here
φ is the azimuthal angle and Θ is the polar angle. (b,c) �, Ri∗ = 100; �, 1000.

is useful to compare the internal wave energy flux to the integrated buoyancy flux
(figure 8b). In both cases, the outgoing energy flux at the top of the boundary layer is
of the same order and the same sign as the buoyancy flux. The integrated turbulent
kinetic energy budget therefore consists of the production term balanced to within a
few per cent by the dissipation. The rest of the energy extracted from the mean flow
is either radiated away from the boundary layer by internal waves, or is transferred
to mean potential energy.

The turbulence-generated internal waves in the simulations exhibit a characteristic
propagation angle in the horizontal and vertical directions. This is illustrated for
simulations 2 and 3 in figure 9. Figure 9(a) shows the horizontal wavenumbers
corresponding to the maximum amplitude of ∂w′/∂z, and figure 9(b) shows the
corresponding azimuthal angle, φ made by the wavenumber vector and the x-axis.
The dominant streamwise wavenumber in the outer layer increases with stratification.
Figure 9(c) shows the polar angle, Θ made by the wavenumber vector and the
horizontal plane, based on the linear dispersion relation using the dominant frequency
of ∂w′/∂z. Since the calculation of Θ assumes that the internal waves are linear, it will
be accurate only where the flow consists of small-amplitude waves, which is generally
true here for z/δ > 1. Since they are generated by a three-dimensional turbulent flow,
it is remarkable that the internal waves with the largest ∂w′/∂z are associated with a
definite structure, namely azimuthal and polar angles approximately 35◦ − 60◦ under
both stratifications considered here.

We have been unable to determine any connection between the wavelength of the
most dominant propagating waves and the Ozmidov scale in the boundary layer

as proposed by Gibson et al. (2006). The Ozmidov scale (figure 10), LOz =
√

ε/N3,
provides an estimate for the smallest-scale eddies that are still affected by the presence
of stratification (Itsweire et al. 1993). In both cases, LOz is large in the turbulent mixed
layer and becomes very small in the outer layer where stratification plays a dominant
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Figure 10. Ozmidov scale for Re∗ = 1920 and tf = 20. Arrows mark the region where 〈p′w′〉
and d〈p′w′〉/dz are positive. —–, Re∗ = 100; - - -, 1000.

role. In an attempt to estimate the region where internal waves are generated, the
arrows in figure 10 mark the region where 〈p′w′〉 and d 〈p′w′〉 /dz are positive; that is
the energy flux is upward and increasing in strength. Since LOz varies rapidly between
the mixed-layer and the pycnocline, it encompasses a large range of scales in the
estimated internal wave generation region. This is especially true when Ri∗ = 1000,
and LOz varies by more than an order of magnitude in this region. We have been
unable to determine a rigorous scaling of dominant wavelength observed in the outer
layer, but it appears to be set through a combination of the mixed-layer depth and
the pycnocline thickness.

The stability of the internal waves can be evaluated by considering the ratio of
the displacement amplitude to the horizontal wavelength. As shown by Sutherland
(2001), plane waves will be unstable to density overturns if

Aξ

λx

>
1

2π
cotΘ, (4.5)

where Aξ = Θ ′/d 〈Θ〉 /dz is the approximate isopycnal displacement, λx is the
horizontal wavelength, and Θ is the angle made by the wavenumber vector and
the horizontal plane. When Θ is small, the internal wave motion is predominantely in
the vertical direction, so the amplitude of the waves must become very large in order
to overturn. In these cases, specifically when Θ < 57.2◦, Sutherland (2001) predicts that
a more restrictive criteria on the wave amplitude is based on the resonant interaction
between the wave and its wave-induced mean flow. The criteria for instability due to
this resonant interaction (Sutherland 2001), is

Aξ

λx

=
1

2π
√

2
sin(2Θ). (4.6)

The ratio of the internal wave amplitude to the horizontal wavelength is shown
in figure 11. Only the cases with Re∗ =960 are shown here, but the result does not
significantly depend on Reynolds number. The internal waves are most unstable in the
pycnocline and when Ri∗ is small, but in all cases, the amplitude of the internal waves
is sufficiently small that they should be stable. The amplitude ratio observed here is
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Figure 11. Internal wave stability estimated from the ratio of the displacement amplitude to
the horizontal wavelength, Re∗ = 960. For each frequency, the wavenumber corresponding
to the largest slope is shown. —–, OT and - - -, SA show the critical amplitude ratios
for overturning and self-advection instabilities, respectively. �, simulation 2 (pycnocline);
�, simulation 2, (outer layer); �, simulation 3 (pycnocline); � simulation 3, (outer layer).
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Figure 12. Turbulent Reynolds number. Arrows show the upper and lower bounds of the
pycnocline where d〈Θ〉/dz > 1.

significantly smaller than observed by Dohan & Sutherland (2003) who observed a
ratio about 0.025 at Θ = 45◦, which is nevertheless still predicted to be stable.

The relative sizes of the nonlinear and viscous terms can be estimated through the
turbulent Reynolds number, defined as:

ReT =
〈u′

iu
′
i〉

1/2
(2π/kH )

ν
, (4.7)

where kH is the horizontal wavenumber associated with the maximum turbulent
kinetic energy, and 〈·〉 denotes an average over horizontal planes and time. The
turbulent Reynolds number is shown in figure 12 for simulations 2 and 3. As expected,
ReT is maximum in the turbulent boundary layer. A sharp decrease occurs in the
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pycnocline (delimited by arrows in figure 12) indicating that turbulence is suppressed
by the strong stratification in this region. In the outer layer, the turbulent Reynolds
number approaches a relatively constant value between 200 and 300 and does not
depend strongly on the Richardson number. Since we have seen in figure 9 that the
dominant horizontal wavenumber in the outer layer is larger when Ri∗ = 1000, the
kinetic energy carried by the waves must also be larger in this case. Below the top
of the pycnocline, however, the turbulent Reynolds number decreases with increasing
stratification, even in the boundary-layer where the temperature gradient is negligible.
It is possible that this is a result of the reduced boundary-layer thickness which limits
the size of the energy-containing scales.

5. Viscous internal wave model
Although the generation of internal waves occurs in a region where nonlinear

effects are important, the selection of a dominant range of frequencies for the internal
waves propagating in the outer region can be explained by a simple linear model.
It is expected that the viscous damping of internal waves should depend on the
wavenumber with small-scale waves decaying more rapidly. In addition, waves with
high and low frequencies are associated with a small vertical group velocity. Since
they take longer to travel a given distance, they are therefore more susceptible to
viscous decay. Starting with a known wave amplitude as a function of frequency and
wavenumber at some initial location z0, the wave amplitude at an arbitrary height z

can be predicted based on the expected vertical propagation speed and viscous decay
rate.

The linearized equations describing the evolution of a small perturbation from the
background flow in a coordinate frame moving with the mean velocity can be written

∂u′

∂t
+ 〈u〉 ·∇u′ + w′ d 〈u〉

dz
− f v′ = − 1

ρ0

∂p′

∂x
+ ν∇2u′, (5.1)

∂v′

∂t
+ 〈u〉 ·∇v′ + w′ d 〈v〉

dz
+ f u′ = − 1

ρ0

∂p′

∂y
+ ν∇2v′, (5.2)

∂w′

∂t
+ 〈u〉 ·∇w′ = − 1

ρ0

∂p′

∂z
− ρ ′

ρ0

g + ν∇2w′, (5.3)

∂ρ ′

∂t
+ w′ d 〈ρ〉

dz
= κ∇2ρ ′. (5.4)

Taking the dot product of u′ and the momentum equations, and taking the horizontal
plane-average, denoted by 〈·〉, gives

∂K

∂t
+ 〈u〉 ·∇K = − 〈u′w′〉 ∂ 〈u〉

∂z
− 〈v′w′〉 ∂ 〈v〉

∂z
(5.5)

− 1

ρ0

∇· 〈u′p′〉 − g

ρ0

〈ρ ′w′〉 + ν∇2K − ν

〈
∂u′

i

∂xj

∂u′
i

∂xj

〉
,

where K = 〈u′
iu

′
i〉 /2 is the perturbation kinetic energy. Since K is only a function of

z and t , and 〈w〉 =0, the convective term 〈u〉 ·∇K = 0. When (5.5) is taken to apply
away from the boundary layer where ∂ 〈u〉 /∂z ≈ 0 and ∂ 〈v〉 /∂z ≈ 0, it simplifies to

∂K

∂t
= − 1

ρ0

∇· 〈u′p′〉 − g

ρ0

〈ρ ′w′〉 + ν
∂2K

∂z2
− ν

〈
∂u′

i

∂xj

∂u′
i

∂xj

〉
. (5.6)
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Similarly, multiplying (5.4) by ρ ′ and taking the plane average gives

∂P

∂t
=

g

ρ0

〈ρ ′w′〉 + κ
∂2P

∂z2
+

g

ρ0∂ 〈ρ〉 /∂z
κ

〈
∂ρ ′

∂xj

∂ρ ′

∂xj

〉
, (5.7)

where the perturbation potential energy is defined by

P =
−g

〈
ρ ′2〉

2ρ0(d 〈ρ〉/dz)
. (5.8)

Using the general form for a plane wave, u′
i = ûi exp[i(k·x − ωt)], the kinetic and

potential energy dissipation can be written as

ε = −ν

〈
∂u′

i

∂xj

∂u′
i

∂xj

〉
= −ν|k|2 〈u′

iu
′
i〉 , (5.9)

ερ = −κ

〈
∂ρ ′

∂xj

∂ρ ′

∂xj

〉
= −κ |k|2 〈ρ ′ρ ′〉 . (5.10)

An equation for the wave energy, W = ρ0(P +K) can be found by summing (5.6) and
(5.7). If Pr = 1, the wave energy then satisfies

∂W

∂t
+ ∇·(W cg) = ν

∂2W

∂z2
− 2ν|k|2W, (5.11)

where we have used the result that the energy flux 〈p′u′〉 = cgW where cg denotes the
group velocity vector. If we make the approximation that the mean wave energy and
the background stratification vary slowly in z, then viscous dissipation dominates the
diffusion term, and the previous equation can be rewritten as

DW

Dt
= −2ν|k|2W − W∇ · cg, (5.12)

where D/Dt denotes a derivative following the group velocity of the wave. For waves
in a slowly varying medium, ∇·cg ≈ 0 so that with this approximation

DW

Dt
= −2ν|k|2W. (5.13)

For convenience, we can recast (5.13) in terms of the vertical velocity. For a plane
wave with an unknown z-dependence, the vertical velocity can be expressed as

w = A(z, t) exp[i(kx + ly − ωt + θ(z)]. (5.14)

By inserting equations of this form into (5.1)–(5.4), the wave energy can be expressed
in terms of the vertical velocity amplitude

W = 1
2
ρ0A

2 |k|2
k2

h

. (5.15)

Again, assuming that the background density gradient and the wave amplitude vary
on scales larger than the wavelength, and since kh and ω are constant following
internal wave rays (Pedlosky 2003), (5.13) simplifies to

D

Dt
(|k|2A2) = −2ν|k|4A2. (5.16)
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In a coordinate frame moving with the group velocity, (5.16) can be integrated to give

A2(z, t) = A2
0

|k0|2
|k|2 exp

(∫ t

0

−2ν|k|2 dt

)
, (5.17)

or

A(z, t) = A0

|k0|
|k| exp

(∫ t

0

−ν|k|2 dt

)
. (5.18)

We can obtain an expression for the expected vertical velocity amplitude as a function
of z in a stationary reference frame by using the vertical component of the group
velocity for a rotating internal wave (Pedlosky 2003)

cgz =
∂ω

∂m
= −m

ω

ω2 − f 2

|k|2 =
kh

ω|k|2 (ω2 − f 2)1/2(N2 − ω2)1/2 =
dz

dt
, (5.19)

which makes use of the dispersion relation for internal waves with rotation

m = −kH

[
N2 − ω2

ω2 − f 2

]1/2

. (5.20)

The negative branch of m has been chosen since we are interested in waves with
an energy flux directed upward. The expected amplitude for a given frequency and
horizontal wavenumber, expressed as a function of z in an Eulerian frame is then

A(z) = A0

|k0|
|k| exp

[
−νω

kh

(ω2 − f 2)−1/2

∫ z

z0

|k|4(N2 − ω2)−1/2 dz′
]

. (5.21)

From (5.19), it is clear that for low- and high-frequency waves (ω = f and ω = N(z),
respectively) the vertical component of the group velocity vanishes. It also follows from
(5.21) that when the frequency is near these limits, the wave amplitude decays rapidly
as a function of z. For a fixed horizontal wavenumber, it can be shown that the vertical
component of the group velocity is maximum for waves with ω2 = (2/3)N2, which
propagate at θ =35◦. (Note that when the magnitude of the wavenumber vector, |k| is
held constant, the group velocity maximum is at θ = 45◦, see Gill 1982) It is of interest
to find the frequency that is associated with the smallest rate of viscous decay. For a
fixed horizontal wavenumber and a constant background stratification, the minimum
rate of decay, determined from (5.21), occurs at ω =

√
4/5N , or θ =26.6◦. Note that

while waves at this frequency are expected to decay the slowest, the amplitude at a
given height is strongly dependent on the distribution of the initial wave amplitude
A0(kh, ω).

The proposed model for the propagation of internal waves then proceeds as follows.
Start with an initial estimate for the internal wave amplitude A0(kH , ω) at a height
z0. Then use the expression for m(z) given by (5.20) for a given N(z) profile, to
numerically integrate (5.21) for every value of kH and ω. The performance of the
viscous internal wave model has been evaluated by using the observed internal wave
spectrum from the simulations at the bottom of the pycnocline. The location z0 is
chosen in each case by using two conditions. First, z0 should be above the height
where 〈p′w′〉 is maximum, with the expectation that most of the waves have been
generated below this level. In addition, z0 should be chosen so that N(z0) � N∞ to
ensure that all frequencies f <ω <N∞ correspond to vertically propagating waves.

The viscosity that appears in (5.21) is taken to be the molecular value. In our
simulations, since the perturbation amplitude in the outer layer is small, the eddy
viscosity in this region is zero, so this is the proper choice. In a situation where an
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Figure 13. Comparison between observed (solid line) and predicted (dashed line) spectra of

∂w′/∂z using a viscous internal wave model for Ri∗ =100, Re∗ = 960. Arrows show N∞/(
√

2f )
(left) and N (z)/f (right). Note that (a,b) and (c,d) have different y-axis scales. (a) z/δ = 0.45;
(b) 1; (c) 2; (d) 8.

eddy viscosity is present in the outer layer, it would be possible to re-derive (5.21)
with νT (z). We have derived the model equations with a Prandtl number of unity,
but altering the viscosity in (5.21) by a small fraction does not qualitatively affect the
results. It is important to note that this model is linear and neglects the turbulent
production and assumes that the background flow is slowly varying.

In order to estimate A0(kH , ω), the frequency/wavenumber spectrum for ∂w′/∂z in
a reference frame moving with the plane-averaged horizontal velocity is divided by
m(z0) as estimated from (5.20). This effectively filters out the high-frequency waves
in the pycnocline that do not propagate vertically. The spectral amplitudes are then
smoothed in frequency space to obtain A0(kH , ω) used in (5.21). Frequencies with
ω >N(z) are allowed to decay exponentially in the vertical direction, representing
evanescent modes with A= A0 exp[im(z − z0)] where m, calculated using (5.20), is
imaginary.

The estimate of the spectrum of ∂w′/∂z from the viscous decay model is compared
with the corresponding spectrum from the simulations in figures 13 and 14. In order
to show the combined contributions of all values of kH , the square root of the sum
of the squared amplitudes of ∂w′/∂z are shown as a function of ω/f in these figures.
The initial spectrum at z0, shown in figures 13(a) and 14(a), peaks at low frequencies.
Arrows indicate the local values of N/f and N∞/(

√
2f ). As they propagate vertically,

the waves with large and small frequencies decay, leaving a central peak. Generally,
the viscous internal wave model predicts the decay of the wave magnitude well.
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Figure 14. As figure 13 but for Ri∗ =1000, Re∗ = 960. (a) z/δ = 0.26; (b) 1; (c) 2; (d) 8.

However, the model tends to overestimate the decay rate for z < δ, especially for
the low stratification case. This may be due to a combination of the neglect of the
turbulent production, the presence of non-propagating modes, and a breakdown of
the WKB assumption of a slowly varying background state. Nevertheless, in the
outer layer, the shape of the spectrum and the frequency associated with the largest
amplitude are generally captured by this simple model, both for moderate (Ri∗ = 100)
and large (Ri∗ =1000) stratification.

The dependence of the viscous internal wave model on the Reynolds number is
examined in figure 15 for Ri∗ =1000. Here, the spectra at z0 are assumed to be
independent of Reynolds number. This assumption is made in order to proceed to
high-Reynolds-numbers beyond the available simulation data. Comparison of the
data at Re∗ =960 and Re∗ =1920 shows that the turbulence spectra for ω <N

are not significantly different, but future simulations of high-Reynolds-number
boundary layers are necessary to obtain the appropriate Reynolds-number scaling.
The model prediction using the molecular viscosity corresponding to both Reynolds
numbers considered here are shown, together with a much larger Reynolds number,
Re∗ = 60 000, that would be typical of oceanic conditions. Even at the large Reynolds
number, the viscous model predicts that the high and low frequencies decay sufficiently
to create a central spectral peak. It is possible that nonlinear effects could become
important at a large Reynolds number, or that the generated wave spectrum could
change. Simulations or experiments at a larger Reynolds number should be carried
out in the future to test the viscous decay mechanism in this situation.

It is of interest to determine the influence of the initial amplitude distribution,
A0(kh, ω), on the model results. Figure 16 compares the model predictions when A0

is taken from the LES data to a case where the initial amplitude is independent of kh

and ω. In order to isolate the influence of the initial amplitude and to compare to the
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Figure 15. Predicted spectrum of ∂w′/∂z for Ri∗ = 1000 and various Reynolds numbers:

—, Re∗ =960; - - -, Re∗ =1920; −·−, Re∗ =60 000. Arrows show N∞/(
√

2f ) (left) and N (z)/f
(right). Note that (a,b) and (c,d) have different y-axis scales. (a) z/δ = 0.26; (b) 1; (c) 2; (d) 8.
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Figure 16. Predicted spectrum of ∂w′/∂z for Ri∗ = 1000 at various heights for (a) Initial
amplitude distribution A0(kh, ω) taken from simulation data and (b) uniform initial amplitude,
A0 independent of ω and kh. In both cases, the initial height z0 = 2δ. Vertical lines show

N∞/(
√

2f ) (left),
√

4/5N∞/f (centre) and N∞/f (right). −·−, z/δ = 8; - - -, 100; —–, 400.

predicted decay in a uniform background flow, the initial height is set to z0 = 2δ. At
this location, the mean density gradient is equal to the free-stream value. Figure 16(b)
shows that when starting from a uniform initial amplitude (with A0 independent of
kh and ω) the maximum amplitude of the propagating waves occurs at ω =

√
4/5N .

It can be shown analytically that this frequency corresponds to the minimum rate of
decay as predicted by the viscous decay model. When using the simulation data to set
A0(kh, ω) as shown in figure 16(a), the frequency associated with the maximum wave
amplitude increases with z, but does so very slowly. Even at a height of z/δ = 400, the
maximum wave amplitude occurs at a frequency less than

√
4/5N . If δ = u∗/f = 25 m,

as roughly estimated from the data of Perlin et al. (2007), then z = 400δ =10 km.
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This implies that the initial amplitude distribution set up by the turbulent generation
process may affect the distribution of wave amplitudes far from the source.

6. Discussion of the internal wave model
While a differential viscous decay explains the amplitude and spectral shape of

the turbulence-generated internal waves observed in our simulations, it remains to
be determined whether this mechanism can explain the results of other experiments,
particularly in those cases with larger amplitude waves. This should be possible to
test, particularly from other numerical simulations. The observed amplitude of w′ as
a function of ω and kH just beyond the wave-generation site can be used in (5.21)
to obtain the predicted amplitude A(ω, kH , z) which can then be compared to the
observed wave field.

The differential viscous decay mechanism was considered by Dohan & Sutherland
(2005). They rejected this explanation partly because they expected that it would
yield waves at the frequency associated with the maximum vertical group velocity,
Θ ≈ 35◦, while they observed Θ ≈ 45◦. As we have shown, differential viscous decay
is able to produce waves near 45◦ since the distribution of initial wave amplitudes
is shifted towards low frequencies and therefore larger angles of vertical propagation
and since ω depends on |k| through the dispersion relation. Sutherland & Linden
(1998) hypothesized that the narrow frequency band that they observed for turbulence-
generated internal waves was due to nonlinear interactions between the waves and
turbulence. Since we have seen that the local Reynolds number in the region of
internal wave production is large, this mechanism cannot be ruled out and warrants
further investigation. However, as we have shown, a simpler mechanism of viscous
decay is capable of capturing many of the features of the observed frequency spectrum.

7. Conclusions
We have conducted simulations of a turbulent Ekman layer over a flat wall. A

uniform stratification was applied initially and maintained as the upper boundary
condition, and the temperature gradient was set to zero at the lower wall. As the flow
developed, a well-mixed turbulent region formed near the wall, capped by a strongly
stratified pycnocline. It has been established that turbulence in a bottom Ekman layer,
when subject to an overlying stratification, radiates internal waves. The primary focus
of this paper was an analysis of this internal wave field. It is worth noting that the
internal waves are radiated by turbulence in a well-mixed region in this problem, in
contrast to the stratified turbulence that is often seen in wakes and shear layers.

Two types of internal waves were observed in the simulations. The first type of
waves have frequencies larger than the outer-layer buoyancy frequency and were
observed in the pycnocline. The pressure perturbation and the vertical velocity of
these waves were nearly 90◦ out of phase, indicating horizontally propagating waves
associated with a small vertical energy flux. Above the boundary layer, these waves
decayed as evanescent modes since their frequency is not between f and N . In the
boundary layer, the turbulent spectrum exhibited a peak at the same frequency as
observed for waves in the pycnocline, which indicates the potential for nonlinear
interactions between the boundary-layer turbulence and the pycnocline waves. Since
regions of strong density gradient are commonly observed above turbulent boundary
layers in both the ocean and atmosphere, investigating the influence of the pycnocline
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waves on the boundary-layer turbulence would be an important topic for further
study.

The second type of waves that were observed here are associated with frequencies
f <ω < N∞ and therefore able to propagate in the outer layer. Considering that they
were excited from a turbulent region with a broad range of frequencies and scales,
it is remarkable that these waves were associated with a distinct peak in frequency
and wavenumber space. The vertical angle of propagation was between 35◦ and 60◦,
which is consistent with several previous studies of turbulence-generated internal
waves. As we have shown, the decay in amplitude and the formation of a spectral
peak is consistent with a linear viscous decay. Although the mechanism that we have
proposed to explain the propagation angle observed for waves propagating in the
outer layer relies on the effects of molecular viscosity, our model indicates that the
formation of a distinct spectral peak is possible even at a realistically large oceanic
Reynolds number.

It can be shown that the viscous model presented here predicts that waves
propagating at Θ = 26.6◦ have the slowest rate of decay. Nevertheless, when starting
with initial wave amplitudes weighted towards low frequencies as observed in the
simulations, the observed and predicted waves show a maximum amplitude at larger
angles. Using the model prediction, we have shown that the initial distribution of
wave amplitudes affects the wave field at very large distances away from the boundary
layer. This implies that knowledge of the boundary-layer turbulence is important for
predicting the amplitude and spectral content of turbulence-generated internal waves
far from the generation site.

The importance of the internal wave energy flux to the boundary-layer energetics
has been estimated by comparing the magnitudes of the terms in the vertically
integrated turbulent kinetic energy equation. It was found that the dominant balance
is between production and dissipation in the boundary layer and that the vertical
energy flux is only a few per cent of these terms. However, most of the production
and dissipation occurs in the mixed region where stratification effects are not directly
felt. We have found that the internal wave energy flux and the integrated buoyancy
flux are the same order in the pycnocline. Since the buoyancy flux is a measure of the
energy transferred from kinetic to potential, if all of the energy radiated away from
the boundary layer as internal waves were instead present as an additional buoyancy
flux, the evolution of the local mean temperature profile in the pycnocline would be
significantly affected.

The support of grant N00014-05-1-0334 from ONR Physical Oceanography,
program manager Dr Scott Harper, is gratefully acknowledged.
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