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The present study sheds light on the subgrid modeling problem encountered in the large eddy
simulation~LES! of practical flows, where the turbulence is both inhomogeneous and anisotropic
due to mean flow gradients. The subgrid scale stress~SGS! tensor, the quantity that is key to the
success of LES, is studied here in such flows using both analysis and direct numerical simulation
~DNS!. It is shown that the SGS tensor, for the case of inhomogeneous flow, where the filtering
operation is necessarily performed in physical space, contains two components: a rapid part that
depends explicitly on the mean velocity gradient and a slow part that does not. The characterization,
rapid and slow, is adopted by analogy to that used in the modeling of the pressure–strain in the
Reynolds-averaged Navier–Stokes equations. In the absence of mean flow gradients, the slow part
is the only nonzero component and has been the subject of much theoretical study. However, the
rapid part can be important in the inhomogeneous flows that are often encountered in practice. An
analytical estimate of the relative magnitude of the rapid and slow components is derived and the
distinct role of each component in the energy transfer between the resolved grid scales and the
unresolved subgrid scales is identified. Results that quantify this new decomposition are obtained
from DNS data of a turbulent mixing layer. The rapid part is shown to play an important role when
the turbulence is in a nonequilibrium state with turbulence production much larger than dissipation
or when the filter size is not very small compared to the characteristic integral scale of the
turbulence, as in the case of practical LES applications. More importantly, the SGS is observed to
be highly anisotropic due to the close connection of the rapid part with the mean shear. The
Smagorinsky eddy viscosity and the scale-similarity models are tested by performinga priori tests
with data from DNS of the mixing layer. It is found that the scale-similarity model correctly
represents the anisotropic energy transfer between grid and subgrid scales that is associated with the
rapid part, while the eddy viscosity model captures the dissipation associated with the slow part.
This may be a physical reason for the recent successes of the mixed model~Smagorinsky plus scale
similarity! reported in the literature. ©1999 American Institute of Physics.
@S1070-6631~99!02205-9#

I. INTRODUCTION

The large eddy simulation~LES! technique has been de-
veloped over the past 30 years with the aim of simulating
high-Reynolds number turbulent flow. The LES approach in-
volves the simulation of the governing equations for the
‘‘large’’ ~grid-scale! eddies with models assumed for the
‘‘small’’ ~subgrid-scale! eddies. Although LES requires a so-
lution of the three-dimensional, unsteady Navier–Stokes
equations, as does DNS~direct numerical simulation!, the
grids are much coarser than those of DNS because the small
scales are not resolved. The smaller computational effort per-

mits LES for high-Reynolds number situations, where DNS
would be impossible. LES is still more computationally in-
tensive than applications of classical Reynolds-averaged
models. The attractiveness of the LES method lies in the
expectation of being able to successfully obtain the statistics
of interest with SGS modeling that is both simpler and more
universal than Reynolds-averaged modeling. Numerous
simple turbulent flows, for example, isotropic turbulence,
channel flow, and pipe flow have been simulated with suc-
cess. The ultimate goal of LES in engineering applications is
to predict complex, three-dimensional, high-Reynolds num-
ber turbulent flows, for example, around an aircraft or in an
engine. However, the development of a reliable LES meth-
odology and accurate subgrid-scale models present signifi-
cant challenges, even for simpler flows, such as those around
bluff bodies. These challenges have prompted vigorous re-
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search in both theory and application of LES, as discussed in
recent reviews by Lesieur and Me´tais,1 Moin,2 and Piomelli
and Chasnov.3

The large scales are obtained by introducing a spatial
filter that operates on the flow field~see Leonard4! to remove
the unresolvable, small scales of turbulence. Simple flows
such as homogeneous turbulence can be simulated with pe-
riodic boundary conditions and the Fourier transform in such
flows permits the use of the spectral cutoff filter. This spec-
tral cutoff filter is an ideal filter because it defines the grid-
scale~GS! and the subgrid-scale~SGS! components exactly;
that is, the GS and the SGS are clearly separated in length
scale. On the other hand, in most practical computations, the
turbulence is not homogeneous and, consequently, filters in
the physical domain are required. Popular filters are the top
hat filter and the Gaussian filter. However, such filtering re-
sults in SGS motion, which involves a dominant contribution
of the small length scales as well as a smaller contribution of
the large scales; consequently, the unambiguous separation
of scales is not achieved. Thus, the subgrid model may nec-
essarily have to depend on the type of the filter. The depen-
dence of the subgrid model on the filter has been studied by
Piomelli, Moin, and Ferziger.5 They showed that the subgrid
model used in a LES must depend on the filter, for example,
the scale-similarity model is not suitable for the spectral cut-
off filter. Recent developments in SGS modeling such as the
dynamic procedure introduced by Germano, Piomelli, Moin,
and Cabot6 and the scale-similarity model of Bardina, Fer-
ziger, and Reynolds7 later refined by Liu, Meneveau, and
Katz8 and Salvetti and Banerjee,9 require explicit filtering.
With the necessity of physical-space filtering in inhomoge-
neous flows as well as the success and promise of the recent
models that require explicit filtering, it is clear that the role
of filtering in SGS modeling deserves attention.

The two primary effects that require modeling in LES of
turbulent shear flows are the following: first, the SGS shear
stress whose gradient directly impacts the mean flow, and
second, the net energy transfer between the large and small
scales, which includes both the dominant dissipative effect
associated with the forward transfer from large to small ed-
dies and the backward energy transfer from small to large
scales. The backward transfer is often small compared to the
forward transfer, except near solid walls. Using the assump-
tion of isotropy of the small scales by analogy to molecular
diffusion, one can introduce an ‘‘eddy viscosity’’ to take into
account the forward-transfer mechanism and can relate the
unknown SGS stress to the resolved GS motion. The well-
known Smagorinsky model10 is the most popular ‘‘eddy vis-
cosity’’ model for the unresolved small scales. When used in
its original form or its recent variants~like the dynamic
model!, or when used in combination with other models such
as the scale-similarity model of Bardinaet al.,7 the Smagor-
insky model is probably the most popular choice in LES
applications.

For the most part, the theoretical background for model-
ing the effect of small scales in a LES application has re-
mained within the framework of homogeneous turbulence.
Various theories of SGS modeling have been developed by
Kraichnan,11 Leslie and Quarini,12 Leith,13 Chollet and

Lesieur,14 Bertoglio and Mathieu,15 etc. In most cases the
Kolomogorov cascade theory is implicitly used to represent
the SGS transfer. However, it is unlikely that, for routine
engineering applications, computational resources will allow
the fine resolution required for such an approximation of
isotropic, homogenous small-scale turbulence to be accept-
able. Furthermore, small scales are anisotropic and inhomo-
geneous innonequilibriumturbulence with turbulence pro-
duction much larger than dissipation that occurs, for
example, in rapid distortions or in the presence of suddenly
imposed body forces. For the more important applications
where the turbulence is inhomogeneous, fundamental studies
are rare. Schumann16 introduced a two-part eddy viscosity
model: ahomogeneouspart that accounts for the ‘‘locally
isotropic’’ part of the SGS stress and aninhomogeneouspart
to represent the anisotropy associated with the use of a large
filter size. The inhomogeneous part is directly related to the
Reynolds-averaged strain rate in the spirit of a classical eddy
viscosity closure. This model has also been used with some
success by Sullivanet al.17 for LES of the planetary bound-
ary layer. The SGS energy transfer mechanism in case of
wall-bounded turbulent flows has been investigated in detail
by Domaradzkiet al.18 Recently, O’Neil and Meneveau19

performed an experimental study of the SGS stresses in an
inhomogeneous turbulent wake. They found that the large
coherent structures in the wake strongly affect the SGS
stress. Thus, the local inhomogeneity of the flow and the
associated coherent structures influences the SGS stress in a
wake and may require modeling.

In the present study we explore the implications of
physical-space filtering in SGS modeling of inhomogeneous
flows in both nonequilibrium and equilibrium turbulence. In
order to develop an understanding in the context of mean
statistics, which are of the greatest interest in engineering
predictions, we use the Reynolds decomposition to split the
flow into a mean and a centered fluctuating flow. The fluc-
tuation represents the turbulence. In the present paper we
explore the various consequences of LES of inhomogeneous
flow on the filtering approach, on the energetics of the inter-
action between the grid scale and the subgrid scale, on the
anisotropy of this interaction, and, finally, on the fidelity of
existing SGS models. Section II is a theoretical analysis of
the effect of the mean velocity gradient on the form of the
SGS stress tensor as well as its influence on the mean flow/
resolved turbulence/subgrid turbulence interactions. An ex-
plicit effect of the mean velocity gradient on the SGS stress
tensor resulting from physical-space filtering is found. By
analogy with the decomposition of the pressure–strain cor-
relation into rapid and slow parts~see Lumley20!, we define a
rapid SGS stress tensor that depends explicitly on the mean
velocity gradient and a slow SGS stress tensor that depends
only on the fluctuating velocity. The rapid component reacts
instantaneously to a change in the mean flow; the slow com-
ponent does not. The role of these components is analyzed
by considering their relative magnitude and their impact on
the energy exchange between the mean flow, large-scale tur-
bulence, and small-scale turbulence. In Sec. III, DNS data of
the temporally evolving turbulent mixing layer of Pantano
and Sarkar21 is used to perform ana priori comparison of the
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various SGS stress tensors at a tensor level~component by
component! and at a scalar level, that is, in the SGS energy
exchange. The applicability of various SGS models to repre-
sent the intrinsically different effects of the rapid and slow
parts of the SGS tensor is examined in Sec. IV.

II. ANALYSIS OF FILTERING IN
INHOMOGENEOUS FLOWS

Central to the spirit of LES, a filter is introduced to
separate the large scales from the small scales of motion. Let
f ,, equivalentlyf̄ , denote the filtered value of the variablef
that nominally represents the large-scale variation. The filter
is usually defined~Leonard4! as follows:

f ,~x!5E
V

f ~x8!g~x2x8!dx,

~1!E
V

g~x!dx51.

In Eq. ~1!, g is the kernel function of the filter and the inte-
gral is over the domainV of the functionf.

In LES, only the filtered velocityui
, , also called the

grid-scale~GS! velocity, is explicitly computed; thus, from
Eq. ~1!,

ui
,~x!5E

V
ui~x8!g~x2x8!dx8. ~2a!

Note thatui
!Þui

, except when filtering is performed with a
spectral cutoff filter, which is an exact low-pass filter in
wave number space. The unresolved, subgrid-scale~SGS!
velocity, denoted byui

. , is given by

ui
.5ui2ui

, . ~2b!

This separation of the scales depends strongly on the type of
the filter that is used. In homogeneous turbulence, filtering
can be done in spectral space with the spectral cutoff filter.
Since such spectral-space filtering clearly achieves a global
separation of scales, it has been popular in the analysis and
development of SGS models as well as in the application of
LES to flows with homogeneous directions.

In typical applications, flows are inhomogeneous in one
or more directions; spectral-space filtering is not possible in
such directions. Furthermore, the SGS modeling approach
may restrict the use of the spectral cutoff filter; the scale-
similarity model is one such example, as shown by Liu, Me-
neveau, and Katz.8 Thus, physical-space filters such as the
Gaussian filter and the top hat filter have become popular in
LES applications.

We now discuss the consequences of physical-space fil-
tering.

A. The ensemble-averaged velocity

Ensemble averaging allows the definition of a mean ve-
locity ^ui& and a centered fluctuating velocityui8 , and the
following Reynolds decomposition ensues:

ui5^ui&1ui8 . ~3!

The application of the filtering operation to the mean and
fluctuating velocity, respectively, gives

^ui&5^ui
,&1^ui

.&, ~4!

ui85ui8
,1ui8

. . ~5!

Equation ~5! implies that both the GS and SGS velocities
contribute to the ensemble-averaged mean. The presence of a
nonzero value of the mean SGS velocity,^ui

.&, is not desir-
able because it leads to a breakdown in the separation of
scales between filtered and unfiltered quantities. Of course,
filtering in spectral space with the cutoff filter would ensure
zero mean of the SGS velocity; however, inhomogeneity of
the turbulence prevents the use of the cutoff filter.

We now compare the effects of physical-space filtering
in a direction with constant mean velocity with that in a
direction with nonuniform mean velocity. From the defini-
tion, Eq. ~1!, if the mean velocity is a constant,^ui

.&50,
since the filtered value of a constant is just the constant itself.
Thus, for this situation, the subgrid component contributes
only to the turbulent fluctuation and filtering does not violate
the separation of scales. The top hat filter when applied to a
constant-gradient mean velocity also results in^ui

.&50.
On the other hand, the application of the top hat filter to

an inhomogeneous direction~with a nonuniform mean veloc-
ity gradient! leads to a nonzero mean component in the SGS
velocity: ^ui

.&Þ0. Thus, an important property of filtering in
the inhomogeneous direction is the introduction of anonzero
mean SGS velocity. Next we will examine the effect of
physical-space filtering on the SGS stress tensor.

B. Subgrid stress tensors

Before discussing the effect of physical-space filtering
on the SGS stress tensor, we recall the following definitions.

The GS~grid-scale! stress tensor is given by

Ri j
,5ui

,uj
, , ~6!

while the primitive SGS~subgrid-scale! stress tensor is de-
fined by

Ti j 5uiuj2ui
,uj

, . ~7!

The adjective ‘‘primitive’’ is used because this subgrid-scale
stress tensor is not identical to the one that appears in the
LES equations, the commonly called SGS stress tensor,t i j ,
which is defined by

t i j 5~uiuj !
,2ui

,uj
, . ~8!

The relation between these two tensors is a Germano identity
at the no-filter level~zero level! and one-filter level~f level!:

t i j 5Ti j
,1 l i j , ~9!

in which l i j is the Leonard term:

l i j 5~ui
,uj

,!,2ui
,uj

, . ~10a!

If the filter used is of the spectral cutoff type, the Leonard
term is a numerical error like the aliasing error encountered
in LES with the pseudospectral method and can be removed
easily.
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Another SGS tensor is the ‘‘resolved’’ part of the SGS
tensor,Li j , given by

Li j 5~ui
,uj

,!,2ui
!uj

! . ~10b!

The importance ofLi j stems from its use in the scale-
similarity model fort i j .

Note that usually only the deviatoric part of the SGS
tensor,t i j 2tkk/3, is considered. The isotropic part,tkk/3, is
absorbed into a generalized pressure.

C. A new split of the SGS tensor into rapid and slow
components

The SGS tensort i j represents, in the spirit of LES, the
effect of the interaction between the resolved ‘‘large scales,’’
ui

, , and the unresolved ‘‘small scales,’’ui
. . To understand

the effect of mean-flow gradients on the subgrid-scale stress
t i j , we use the Reynolds decomposition of the velocity into
mean and fluctuating components.

The SGS tensort i j obtained after using Eq.~3! for the
velocity can be split into two parts: arapid part that explic-
itly depends on the mean flow and a remainingslow part.
The term ‘‘rapid’’ is used by analogy to the terminology
introduced by Lumley20 in the context of Reynolds-averaged
modeling, where the component of the pressure–strain term
that explicitly depends on the mean velocity gradient is re-
ferred to as the rapid part and the remainder as the slow part.
Thus,t i j is split as follows:

t i j 5t i j
Rapid1t i j

Slow, ~11!

where

t i j
Slow5~ui8uj8!,2ui8

,uj8
, , ~12a!

t i j
Rapid5~^ui&^uj&!,2^ui

,&^uj
,&1~ui8^uj&!,2ui8

,^uj
,&

1~uj8^ui&!,2uj8
,^ui

,&. ~12b!

The slow SGS tensort i j
Slow is always present in LES, irre-

spective of the presence or absence of a mean flow, and its
effect and modeling has been discussed~for example, Leslie
and Quarini,12 Kraichnan,11 Chollet and Lesieur,14 and Ber-
toglio and Mathieu,16 among others!, in the case of isotropic
or homogeneous turbulence. Therapid SGS tensort i j

Rapid

arises only if the filtering is done in a direction where^ui& is
not constant. It should be noted that, distinct from this ex-
plicit contribution of the mean-flow gradient to the subgrid-
scale stress throught i j

Rapid, there would be an implicit effect
of the mean flow ont i j

Slow, which could require additional
modifications to models based on homogeneous isotropic
turbulence when applied to inhomogeneous flows.

The nature oft i j
Rapid is different from that oft i j

Slow. For
example, even when the flow is laminar, the first line in Eq.
~12b! persists in the inhomogeneous direction while the two
others vanish. Furthermore, as will be shown in the next
section, the magnitude oft i j

Rapid depends on the gradient of
the mean velocity. Therefore, the time scale of its response to
mean flow changes is short and, as will be shown, its mag-
nitude with respect to the slow part is larger for rapid distor-
tion flows. If the ensemble-averaged field is subtracted be-
fore performing filtering, the presence of the rapid term can

be avoided. Although possible ina priori tests of SGS mod-
els, this is not a solution in the application of LES to an
inhomogeneous flow, because the mean flow is not known in
advance. The rapid term is a consequence of filtering in the
inhomogeneous direction. In principle, filtering could be per-
formed only in the homogeneous directions, if they are
present, in order to avoid the rapid term. In practice, filtering
is required in all directions, regardless of flow inhomogene-
ity, because resolution down to the smallest Kolmogorov
scale that is required in the direction without filtering would
excessively increase the size of the computational grid.

D. Relative size of rapid and slow terms

An estimate, based on a second-order Taylor series ex-
pansion, of the relative size of the slow and rapid terms is
presented below for the top hat filter. It should be noted that
the estimate is approximate because a low-order Taylor se-
ries expansion can have large inaccuracy in estimating local
variations in the velocity fluctuation. DNS will be used later
for a more precise, quantitative comparison.

Using the Taylor series expansion of the filter introduced
by Clark, Ferziger, and Reynolds22 in their derivation of the
gradient-type subgrid model, Eq.~1! can be approximated by

f ,~x!5 f ~x!1
Dk

2

24
]k

2f ~x!1O~D4!, ~13a!

which leads to

f .~x!52
Dk

2

24
]k

2f ~x!1O~D4!. ~13b!

Note that the first derivative drops out of the rhs of Eq.~13a!
since a symmetric filter is assumed. Here,Dk is the spatial
width of a symmetric filter in thekth direction and]k

2 is the
second-order partial derivative in thekth direction. Equation
~13! is valid for both Gaussian and top hat filters.

The mean subgrid variablêf .& is then

^ f .&~x!52
Dk

2

24
]k

2^ f ~x!&1O~D4!. ~13c!

It should be noticed that the size of this subgrid mean value
depends on the second derivative of the mean profile, which
is related to the local curvature.

For the two subgrid-scales stressesTi j andt i j , the cor-
responding approximate expressions are

Ti j 52
Dk

2

24
@]k

2~uiuj !22~]kui]kuj !#1O~D4!, ~14a!

t i j 51
Dk

2

12
]kui]kuj1O~D4!. ~14b!

The mean value of the rapid SGS stress,^t i j
Rapid&, can be

easily evaluated since it contains only the mean velocity gra-
dient. We have

^t i j
Rapid&5

Dk
2

12
]k^ui&]k^uj&1O~D4!. ~15a!
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Neglecting theO(D4) term implies that, to leading order, the
rapid SGS stress depends on the square of themean velocity
gradientand varies asD2. Similarly,

^t i j
Slow&5

Dk
2

12
^]kui8]kuj8&1O~D4!. ~15b!

The error incurred by neglecting theO(D4) term in Eq.
~15b! is larger than in Eq.~15a!; nevertheless, the estimate is
appropriate for a sufficiently small filter size.

As an example, consider the DNS test case used in the
present study ~the temporally evolving mixing layer!,
]k^ui&5S, for i 51 andk52, and zero otherwise. The re-
sulting approximation for the mean rapid SGS stress is then

^t i j
Rapid&5

D2
2

12
S2d i1d j 11O~D4!, ~15c!

and, assuming an isotropic filter, for the mean slow SGS
stress:

^t i j
Slow&5

D2

12
^]kui8]kuj8&1O~D4!. ~15d!

The only important mean rapid SGS stress component is
the 11 component, given by

^t11
Rapid&5

D2

12
S21O~D4!. ~15e!

The scaling given by Eq.~15e! is checked later in the results
section. From this simple example of the temporally evolv-
ing mixing layer, it is clear that the rapid component has an
anisotropy that is directly related to the mean-flow gradients.

How large is the rapid term relative to the slow term?
When the filter size is small, Eq.~15b! applies, and after
using ^]kui8]kuj8&5O(e/n), it follows that

^t i j
Rapid&

^t i j
Slow&

5OS nS2

e D5OS nS

u2

P

e D5OS 1

Rev
D S U2

u2 D S P

e D .

~16a!

Here,U denotes the mean velocity difference,u denotes the
rms value of the turbulence; the turbulence production has
been estimated byP5O(Su2) and the Reynolds number,
Rev5Udv /n, is defined using the vorticity thickness that is
estimated bydv5O(U/S). Thus, for equilibrium turbulence
with P/e5O(1), and at ahigh Reynolds number, the rapid
part is small compared to the slow part for a sufficiently
small filter size. However, for nonequilibrium turbulence
with P/e.O(1), therapid part may become comparable to
the slow part.

There is another situation where the rapid part may be of
importance. In practice, the filter size in LES of complex
flows may not be much smaller than the integral length scale.
In such a situation a low-order Taylor-series expansion of the
velocity fluctuation does not apply, and therefore Eq.~15d!
must be replaced by

^t i j
Slow&5O~u2!, ~16b!

which leads to

^t i j
Rapid&

^t i j
Slow&

5OS S2D2

u2 D5OS S2l 2

u2 D S D2

l 2 D . ~16c!

Here l is a characteristic integral scale of the turbulence.
SinceSl/u5O(1) in shear-driven turbulence, the rapid part
can become comparable to the slow part when the filter size
increases, such thatD/ l 5O(1). Themagnitude of the rapid
component is even larger when the turbulence is in nonequi-
librium with Sl/u.O(1).

E. The energy transfer mechanism between grid and
subgrid scales

It is important to identify clearly the energy transfer
mechanisms between the different scales of motion and en-
sure that the model for the subgrid-scale tensort i j represents
these mechanisms. Let us first recall the interaction between
mean and fluctuating fields in the context of the Reynolds-
averaged approach. The equation for the kinetic energy,
^ui&

2/2, of the mean motion is

] t

^ui&
2

2
1^uj&] j S ^ui&

2

2 D5^ui8uj8&^Si j &

2pres term1visc term,

~17a!

while the equation for the turbulent kinetic energy,^ui8
2&/2,

is

] tK ui8
2

2 L 1^uj&] j S K ui8
2

2 L D 1] j S K uj8
ui8

2

2 L D
52^ui8uj8&^Si j &2pres term2visc term. ~17b!

HereSi j is the rate of strain tensor andsi j8 is its fluctuating
part. The coupling between mean and fluctuating kinetic en-
ergy is by the production term,2^ui8uj8&^Si j &, denoted byP.
It is usually positive, draining energy from the mean flow
into the turbulence. The third term of Eq.~17b!, which can
be rewritten aŝ ui8uj8si j8 &, represents the self-interaction be-
tween various scales of turbulence.

Now consider the energy transfer mechanisms in LES.
We follow the approach of Haertel, Kleiser, Unger, and
Friedrich,23 who consider interactions between the kinetic
energy associated with the ensemble-mean grid-scale~GS!
velocity, the fluctuating GS velocity and the fluctuating SGS
velocity. From the transport equation for the grid-scale ve-
locity,

] tui
,1] jui

,uj
,52] jt i j 2P,/r1n] j j ui

, , ~18!

in which P, is the filtered pressure and does not include the
tracetkk/3, it is straightforward to derive transport equations
for the GS mean and fluctuating kinetic energies,^ui

,&2/2
and ^ui8

,2&/2, respectively. The role of the SGS stress in
these transport equations for the kinetic energies can be bet-
ter understood by splittingt i j into a mean and fluctuating
component. Then the primary energy transfer term associ-
ated with the SGS stress,2^t j i Si j

,&, also called the SGS
dissipation, is split into a mean and fluctuation part:

^t j i Si j
,&5^t j i &^Si j

,&1^t j i8 si j8
,&. ~19!
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Here,^Si j
,& andsi j8

, are the mean and fluctuating parts of the
grid-scale rate of strain tensor, respectively.

The equation for the mean GS kinetic energy is

] t

^ui
,&2

2
1^uj

,&] j S ^ui
,&2

2 D
5^ui

,8uj
,8&^Si j

,&1^t i j &^Si j
,&

1turb transp term1pressure term1visc term,

~20a!

while the equation for the turbulent GS kinetic energy is

] t

^ui8
,2&

2
1^uj

,&] j S ^ui8
,2&
2 D

52^ui
,8uj

,8&^Si j
,&1^t i j8 si j8

,&2^ui
,8uj

,8si j8
,&

1turb transp term1pressure term1visc term.

~20b!

In order to simplify the interpretation of the above equations,
we do not consider the last three terms: the turbulent trans-
port, the pressure term, and the viscous term.

In order to better describe the effect of rapid and slow
components of the SGS stress in the energy transfer process,
we will apply the decomposition into mean and fluctuating
components proposed by Haertelet al.23 to both, rapid and
slow components. Thus,

t i j
Rapid5^t i j

Rapid&1t i j8
Rapid

and

t i j
Slow5^t i j

Slow&1t i j8
Slow.

From Eq.~12b! it is clear that the mean rapid part is given by

^t i j
Rapid&5~^ui&^uj&!,2^ui

,&^uj
,&, ~21a!

while the fluctuating part is

t i j8
Rapid5~ui8^uj&!,2ui8

,^uj
,&1~uj8^ui&!,2uj8

,^ui
,&.

~21b!
Similarly, the mean part of the slow SGS stress is

^t i j
Slow&5^~ui8uj8!,2ui8

,uj8
,&,

while the fluctuating component is given by

t i j8
Slow5t i j

Slow2^t i j
Slow&.

The first term on the right-hand side of Eqs.~20a! and
~20b!, which is analogous to the production termP in the
Reynolds-averaged equations,~17a! and ~17b!, transfers en-
ergy between the mean and fluctuating parts of the GS ki-
netic energy. The second term,^t i j &^Si j

,&, on the right-hand
side of Eq.~21a!, is an interaction between the mean SGS
stress and the mean grid-scale motion; the fluctuating grid-
scale motion is not involved. This term can be rewritten as

^t i j &^Si j
,&5^t i j

Rapid&^Si j
,&1^t i j

Slow&^Si j
,&, ~22a!

to isolate the effect of the rapid term. The slow term in Eq.
~22a! corresponds to the term identified by Haertelet al.23 as
representing the subgrid contribution to the total turbulence

productionP; the part,P2^t i j
Slow&^Si j

,&, which is a rewritten
form of the first term in Eq.~20b!, supplies energy to the
grid-scale fluctuations while the remainder,^t i j

Slow&^Si j
,&, is

transferred to the subgrid-scale fluctuations. The third term,
^t i j8 Si j8

,&, in Eq. ~20b!, which appears only in the fluctuating
GS energy equation, represents the nonlinear interaction be-
tween the GS and SGS parts of the turbulence~usually, for-
ward cascade; sometimes, backward transfer or backscatter!.
However, if we rewrite this term as

^t i j8 si j8
,&5^t i j8

Rapidsi j8
,&1^t i j8

Slowsi j8
,&, ~22b!

it is clear that there is a component, the rapid part, which
contains both mean@due to the presence of mean velocity in
t i j8

Rapid; see Eq.~21b!# and fluctuating velocities, in addition
to the slow component, which involves only the fluctuating
velocity. The term̂ t i j8

Rapidsi j8
,& represents adirect coupling

between the mean velocity and fluctuating SGS velocity,
which influences the fluctuating GS energy. DNS will be
used to check whether^t i j8

Rapidsi j8
,& represents forward trans-

fer or backscatter.

III. EVALUATION OF THE RAPID AND SLOW SGS
TENSORS IN A TURBULENT MIXING LAYER

Results from the DNS of the temporally evolving, turbu-
lent mixing layer by Pantano and Sarkar21 are used for clari-
fying the relative importance of the rapid and slow parts of
the SGS tensor. A dataset with low convective Mach num-
ber, Mc50.3, is used so that compressibility effects can be
neglected.

A priori tests to evaluate the rapid and slow SGS tensors
are performed on a tensor level by comparing the magnitude
of the mean and rms values of the different directional com-
ponents, as well as on a scalar level where their relative
contributions to the energy transfer between grid scales and
subgrid scales are obtained. The tests are performed with
DNS results at an early time before the turbulence is fully
developed and at a later time. Thetop hatfilter is used. Note
that the filter is appliedisotropically in all directions in thea
priori test. The influence of the filter size is also investigated.
The filter size is set toD f /D52 and 4 for the early time
dataset andD f /D52, 4, 6, and 8 at the later time. HereD is
the grid spacing~uniform in all directions! in the DNS. The
temporally evolving mixing layer is inhomogeneous in a
single direction along the transversey coordinate. Conse-
quently, ensemble-averaged statistics are functions of only
they coordinate and can be obtained by averaging the instan-
taneous flow overx-z planes.

A. The turbulent mixing layer DNS

The three-dimensional, unsteady Navier Stokes equa-
tions were numerically solved by Pantano and Sarkar21 to
investigate a temporally evolving turbulent mixing layer.
The initial mean velocity profile isU(y)5(DU/2)tanh
(2y/2dm); where DU5U12U2 is the velocity difference
between upper and lower streams, anddm is the momentum
thickness. The initial fluctuations are broadband with an iso-
tropic turbulence spectrum in the horizontal directions, and
turbulent kinetic energy that varies in the transversey direc-
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tion as k/DU2}exp(2y2/2dm
2 ). A low-Mach number case

with convective Mach number,MC50.3, from the DNS is
considered here. It is known from experimental data that the
shear layer behavior atMC50.3 deviates little from the in-
compressible case and, therefore, theMC50.3 dataset can be
considered as effectively incompressible. The initial Rey-
nolds number based on the initial vorticity thickness is Rev

5DUdv,0 /n5160. A fourth-order compact finite difference
approximation with a fourth-order Runge–Kutta low storage
method for the time advancement is used for the numerical
solution. A uniform 12831283128 grid is used.

A summary of pertinent DNS results is provided here.
The evolution of the momentum thickness,dm , is shown in
Fig. 1. After an initial transient, the shear layer evolves in
time with a linear growth rate as observed in numerous
physical experiments. In the laboratory, the mixing layer
grows in the streamwisex direction with the following
growth rate law~it is customary to use the vorticity thick-
ness,dv) applicable to the self-similar regime,

ddv /dx5Cd~U12U2!/~U11U2!,

with a consensus of experimental data givingCd50.16. As-
suming a convection velocity of (U11U2)/2, the temporal
growth rate becomes

ddv /dt50.08DU.

The observed growth rate in our DNS isddv /dt
50.07DU, which is in good agreement with the above ex-
perimental result. Figures 2~a! and 2~b! show profiles of the
turbulence intensities at a late time in the DNS which are
seen to be in good agreement with the experimental data of
Bell and Mehta.24

B. Magnitude of slow and rapid SGS tensor

The total, slow, and rapid components of the SGS tensor
are computed as follows. First, the total SGS tensort i j is
obtained by processing the whole velocity field. Second, the
slow part, t i j

Slow, is computed by processing the centered
fluctuating velocity obtained by subtracting the mean, plane-

averaged velocity,̂U&(y), from the total velocity field. Fi-
nally, the difference between the total and the slow SGS
stresses gives the rapid SGS stress,t i j

Rapid. Thea priori tests
are carried out at timet* 5236 andt* 51089, corresponding
to an early and later stage of the mixing layer, respectively.
Here, the normalized valuet* 5DU t/dm,0 is used for the
time variable. The Reynolds numbers based on a streamwise
micro-Taylor scale and rms velocity are 108 at the early
stage and 142 at the late stage. Different wave number posi-
tions corresponding to different filter sizes used are indicated
in Fig. 3~a! ~for early stage! and Fig. 3~b! ~for later stage!
that show centerline, one-dimensional spectra,Eui(kz ,t* ),
for each velocity component.

At the early time, coherent spanwise rollers and braids
are clearly present, as shown in Fig. 4~left picture!, which
could influence the mean/grid-scale/subgrid-scale interac-
tions, while at the later time, these coherent structures are not
as evident~see Fig. 4, right picture! and there is significant,
small-scale, three-dimensional turbulence.

Normalized profiles are obtained by nondimensionaliza-
tion with the centerline value of appropriate DNS data, at the
same time step. The subgrid stresses are normalized with

FIG. 1. Evolution of the momentum thickness.

FIG. 2. ~a! Profiles of the streamwise turbulence intensity at time step
52500,t* 51089. Symbols denote experimental data from Bell and Mehta
~Ref. 24!. ~b! Profiles of the transverse turbulence intensity at time step
52500,t* 51089. Symbols denote experimental data from Bell and Mehta
~Ref. 24!.
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twice the turbulent kinetic energy. The mean subgrid energy
production~or dissipation! by the mean flow as well as the
fluctuating subgrid energy transfer are normalized with the
Reynolds-averaged turbulent dissipatione, and the SGS

shear stress with the Reynolds-averaged turbulent shear
stress.

1. Tensor level

In order to compare the magnitude of the slow and the
rapid tensor components, we use ensemble averaging to get
the mean and fluctuating components,

t i j 5^t i j &1t i j8 .

In the present temporally evolving mixing layer, since the
mean flow varies only in they ~equivalentlyx2) direction, it
is clear from the approximate expression of the rapid SGS
stress,̂ t i j

Rapid&, given by Eq.~15c!, that the dominant part of
this tensor is the 11 component. Therefore, when discussing
the rapid SGS stress, attention is focused on the behavior of
the ^t11

Rapid& component. A comparison with the slow SGS
stress is done with the corresponding 11 component,^t11

Slow&.
In addition, the anisotropy of these two tensors is also dis-
cussed.

a. Mean SGS stress magnitude and its anisotropy.Fig-
ures 5~a!–~b! show the behavior of the 11 component of the
mean rapid and the mean slow SGS tensors,^t11

Rapid& and
^t11

Slow&, for the filter size varying from two to four times the
grid size, at the early stage of the development of the mixing
layer, t* 5236. Both increase as the filter size becomes
larger. Compared to the slow part,^t11

Rapid& is approximately
three times larger. This is expected at the early stage: first,
the turbulence is still evolving, the ratioP/e'10 is large
@see Eq.~16a!#; second, there is strong local inhomogeneity
due to the presence of large coherent structures~see Fig. 4!.
These coherent structures induce locally large curvature of
the mean flow, which, in turn increases the rapid part of the
SGS stress. In our case, the mean velocity profile is obtained
by using a ‘‘plane averaging’’ procedure. The important ef-
fect of the local streamwise inhomogeneity on^t11

Rapid& is
reduced by averaging in the streamwise direction over mul-
tiple periods of the coherent structures. If ‘‘phase averaging’’
is introduced, such as that used by O’Neil and Meneveau,19

to obtain the local streamwise inhomogeneity, then the effect

FIG. 3. ~a! One-dimensional spanwise spectrum,Eui(kz ,t* ), for i 51, 3, at
time step5500, t* 5236. ~b! One-dimensional spanwise spectrum,
Eui(kz ,t* ), for i 51, 3, at time step52500,t* 51089.

FIG. 4. Vorticity contours in thex-y plane. Left: time step5500, t* 5236; Right: time step52500,t* 51089.
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of coherent structures on̂t11
Rapid& could be obtained. How-

ever, we do not consider coherent structures in more detail
herein.

The behavior of̂ t11
Rapid& @rescaled with (D f /D)2# at a

later stage of the mixing layer,t* 51089, is given in Fig.
6~a!. The scaling law, Eq.~15e!, for ^t11

Rapid& is clearly ob-
tained in Fig. 6~a!. The magnitude of the rapid part is small,
but not negligible, compared to the magnitude of the slow
part, ^t11

Slow& @see Fig. 6~b!#. The small magnitude of the
mean rapid part is expected, since at this stage, the flow is
fully developed with equilibrium turbulence.

Another important fact is the strong anisotropy of the
mean rapid SGS stress, as shown in Fig. 7~a!, where^t i j

Rapid&
is plotted ~caseD f52D, at an early stage! and Fig. 7~b!
~caseD f52D, at a later stage!. In accord with the approxi-
mate expression, Eq.~15c! for ^t i j

Rapid&, the only significant
component of the rapid mean SGS stress,^t i j

Rapid&, is the 11
component. All other components are negligibly small~com-
ponents 13, 23 are not plotted, they are of the same order!.
The sole importance of the 11 component of the mean rapid
SGS stress in the temporally evolving mixing layer is a di-
rect consequence of the simplicity of this flow; only a single
component, the 12 component of the mean velocity gradient
tensor is nonzero. In a more complex flow, such as the sud-

den expansion flow, more components of the mean rapid
SGS stress would be nonzero and could have important con-
sequences on the mean flow development. We will see later
that the anisotropy of the rapid part results in a more com-
plex energy transfer mechanism between grid and subgrid
scales in the mixing layer.

It is of interest to check the anisotropy of^t i j
Slow&. Fig-

ures 8~a!–8~b! show all components, at the early and later
stages, with the filter size set to twice the grid size. At the
early stage, the anisotropy is significant in both normal and
shear stresses. The 12 shear component has the same order of
magnitude as the diagonal components, while the two other
shear components, 13 and 23, are nearly zero. Since the tur-
bulence is still evolving in this flow,̂t i j

Slow& is substantially
influenced by the mean flow; this is an implicit effect of the
mean flow gradient that is not related to physical-space fil-
tering. At the later stage, when the turbulence is fully devel-
oped, the three diagonal components are more isotropic and
are nearly equal, as shown in Fig. 8~b!. Among the SGS
shear stresses, the 12 shear stress is dominant and is approxi-
mately 25% of the diagonal components. The two other off-
diagonal components remain negligible. In Fig. 8~c! the slow
SGS shear stresŝt12

Slow&, normalized by the value of the
mean shear stress^u18u28& at the centerline, is plotted at the

FIG. 5. ~a! Normalized mean SGS stress,^t11
Rapid/2k&, at time t* 5236,

D f /D52, and 4.~b! Normalized mean SGS stress,^t11
Slow/2k&, at time t*

5236,D f /D52, and 4.

FIG. 6. ~a! Normalized mean SGS stress,^t11
Rapid/2k&, at time t* 51089,

D f /D52, 4, 6, and 8.~b! Normalized mean SGS stress,^t11
Slow/2k& and

^t11
Rapid/2k&, at timet* 51089,D f /D58.
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later stage and for different filter sizes. The importance of the
SGS shear stress is clear; it varies approximately from 5%
(D f /D52) to 40% (D f /D58) of the Reynolds-averaged
shear stress when the filter size is increased. Thus the filtered
scales are clearlynot isotropic, as evidenced by the Reynolds
shear stress associated with these scales. The anisotropy in-
creases with filter size. Significant anisotropy of the SGS
motion is to be expected at the filter cutoffs used in practice.
Indeed, if the subgrid scales were perfectly isotropic so that
the Reynolds-averaged subgrid shear stress was zero, the in-
fluence of the subgrid stress on the mean velocity field
~which is through the term] j^t i j &) would be zero in the
turbulent mixing layer. Furthermore, physical-space filtering,
since it does not perform a strict separation of scales~there is
an additional smearing of scales!, adds to the anisotropy in-
duced by the mean flow. Since the nonzero SGS shear stress
is important because it directly influences the mean flow, we
will check later as to whether the usual SGS models can
accurately capture the SGS shear stress.

b. Fluctuating SGS stress magnitude and its anisotropy.
The rms value of the SGS tensor is closely related to the
behavior of the small scales. Usually, in the theory of SGS
modeling, the small scales are assumed to be isotropic which
allows the use of the isotropic relationship concerning the

energy transfer between scales. In the present case since a
spatial filter is used, the fluctuating part of the SGS motion
contains explicitly the mean flow@see Eq. 12~b!#; therefore,
the energy transfer could deviate from isotropy.

Figures 9~a!–9~d! show the rms value of all components
of the rapid and slow SGS stress tensor, at both, early and
late times, for the case withD f52D. At both stages, the
rapid SGS part shows large anisotropy; only the 11 and 12

FIG. 7. ~a! Normalized mean SGS stress,^t i j
Rapid/2k&, at time t* 5236,

D f /D52. ~b! Normalized mean SGS stress,^t i j
Rapid/2k&, at time t*

51089,D f /D52.

FIG. 8. ~a! Normalized mean SGS stress,^t i j
Slow/2k&, at time t* 5236,

D f /D52. ~b! Normalized mean SGS stress,^t i j
Slow/2k&, at time t*

51089, D f /D52. ~c! Normalized mean slow SGS shear stress,
^t i j

Slow&/^u18u28&, at timet* 51089,D f /D52, 4, 6, and 8.
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components are nonzero. At the early stage, all components
of the rms slow SGS stress are of the same order, but are not
isotropic and are smaller than the corresponding value of the
rapid SGS rms. At the later stage, the rms of the normal
components of the slow SGS tensor are equal and the rms of
the shear components are also equal. The rms value of the
rapid SGS is smaller than that of the slow component, but is
significant: t118

Rapid is nearly 35% oft118
Slow and t128

Rapid is
about 30% oft128

Slow. The rms of the individual components
of the total SGS stress~rapid1slow!, even within fully de-
veloped, equilibrium turbulence~a later stage!, are unequal.

Once again, the influence of the mean flow clearly ap-
pears, and is strongest at the early stage.

c. Summary. As long as the mean flow has a nonzero
gradient and a spatial filter is used, there exists a rapid com-
ponent of the SGS stress that cannot be ignored. In the mix-
ing layer, the mean rapid component is especially large dur-
ing the early stage of the evolution@compare Fig. 5~a! with
Fig. 5~b!#, in agreement with the approximate scalings de-
rived in Sec. II D. The rapid component is strongly aniso-
tropic in response to the mean flow. This result is consistent
with and helps explain the recent finding of O’Neil and
Meneveau.19 In their study of the SGS properties in a high-
Reynolds number turbulent wake using a Gaussian filter in
physical space, they showed that coherent structures~the

Von-Karman street! strongly correlate with the SGS stress
and make the isotropy of the subgrid scales doubtful. We
confirm here that mean flow gradients can lead to anisotropy
of the SGS stress tensor. In the later, fully developed stage,
although the mean rapid part is small, the rms of the rapid
part is substantial suggesting that the rapid part could have a
significant contribution to the SGS energy transfer. In the
next section, the influence of the anisotropy~in both normal
and shear components! of the SGS stress and the role of the
rapid SGS stress with respect to the energy transfer is exam-
ined.

2. Energy transfer analysis

As pointed out in Sec. II E, the contraction oft i j by Si j

gives the energy transfer between different GS and SGS mo-
tions. Here, we compare the rapid SGS contribution to the
slow SGS one. Recall that a positive value of the energy
transfer term,2^t j i Si j

,&, implies dissipation or forward
transfer of energy while a negative value refers to backward
transfer of energy. Recall also that the spherical tensor is not
subtracted in our case. First, we consider the case at a later
stage,t* 51089. Since the turbulence is fully developed at
this stage, it is easier to interpret the energy transfer mecha-
nism. At the early stage, since the turbulence is in a strongly

FIG. 9. ~a! The rms of normalized rapidt i j8
Rapid/2k, at timet* 5236,D f /D52. ~b! The rms of normalized slowt i j8

Slow/2k, at timet* 5236,D f /D52. ~c! The
rms of normalized rapidt i j8

Rapid/2k, at timet* 51089,D f /D52. ~d! The rms of normalized slowt i j8
Slow/2k, at timet* 51089,D f /D52.
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nonequilibrium state, the results are more difficult to inter-
pret. However, notable features are identified.

a. Later stage, t*51089. Figures 10~a!–10~b! show the
subgrid energy production by the mean flow,2^t j i &^Si j

,&,
normalized by the turbulent dissipation for two filter sizes:
D f /D52 and 8. In parallel to the observation at the tensor
level comparison, the contribution of the mean rapid part,
2^t j i

Rapid&^Si j
,&, is negligibly small compared to the slow

part, 2^t j i
Slow&^Si j

,&. But the contribution of the fluctuating
rapid part of the subgrid dissipation,2^t j i8

Rapidsi j8
,&, normal-

ized by the turbulent dissipatione, can be substantial, as
shown in Figs. 11~a!–11~b! (D f /D52 and 8!. Furthermore,
the relative contribution of the rapid part increases with filter
size.

As pointed out in the previous sections, the rapid SGS
stress is highly anisotropic; the influence of its anisotropy on
the grid/subgrid energy transfer is evaluated by plotting the
terms2^t i j8 si j8

,& ~no summation on indexi!, which occur in

the GS diagonal Reynolds stresses (^ui8
,2

&, for i 51 – 3)
equations. Figures 12~a!–12~b! show the slow and rapid SGS
contributions, respectively, at late time and forD f /D58.
The slow SGS dissipation is nearly isotropic. In contrast, the
high anisotropy of the rapid SGS dissipation appears clearly

by the dominance of its contribution to the^u18
,2& equation.

A comparison of the values of the slow and rapid SGS dis-

sipation within the^u18
,2

& equation shows that they are of
the same importance. The subgrid dissipation terms in the
GS shear stresses are, however, small enough to be neglected
~figure not shown! for both rapid and slow components.

Once again, even for fully developed turbulence, the
rapid part of the SGS stress is important because it anisotrop-
ically alters the energy transfer between grid and subgrid
scales. Thus, the usual isotropic assumption for the subgrid
dissipation fails. We return to this point later in the section
on subgrid modeling.

b. Early stage, t*5236. Since the turbulence is within a
‘‘birth’’ stage at t* 5236, the energy transfer mechanism is
more complicated. The filter size used is twice the grid size
in the following results. Figure 13 shows the respective con-
tributions of the rapid and slow components to the SGS en-
ergy transfer,2^t j i &^Si j

,&. It appears that the contribution of
the mean rapid part is again small, although it was shown in
the section describing tensor-level results@compare Figs.
5~a! and 5~b!# that the 11 component of the mean rapid SGS
stress is larger than the corresponding slow part and its en-
ergetic contribution can be neglected. This is not surprising,
since the mean flow is a simple shear flow;^S11

, &'0 and,

FIG. 10. ~a! Energy transfer by the mean SGS stress,2^t j i
Rapid&^Si j

,&/e and
2^t j i

Slow&^Si j
,&/e, at time t* 51089, D f /D52. ~b! Energy transfer by the

mean SGS stress,2^t j i
Rapid&^Si j

,&/e and 2^t j i
Slow&^Si j

,&/e, at time t*
51089,D f /D58.

FIG. 11. ~a! Subgrid energy transfer2^t j i8
Rapidsi j8

,&/e and2^t j i8
Slowsi j8

,&/e,
at time t* 51089, D f /D52. ~b! Subgrid energy transfer2^t j i8

Rapidsi j8
,&/e

and2^t j i8
Slowsi j8

,&/e, at timet* 51089,D f /D58.
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consequently, the contribution of the 11 component to
2^t j i &^Si j

,& is negligible. It must be emphasized that, in
other cases, like the near-wake of a bluff body or the flow
with streamwise contraction, the production by the mean
rapid SGS stress is potentially important.

The subgrid energy transfer,2^t j i8 si j8
,&, in each diago-

nal component of the GS Reynolds stress tensor (^ui8
,2

&) is
illustrated in Fig. 14~a! ~slow SGS! and Fig. 14~b! ~rapid
SGS!. First, we observe significant anisotropy, even in the
slow SGS dissipation. Second, the rapid and slow contribu-
tions are of the same magnitude. Third, the contribution of

FIG. 12. ~a! Subgrid energy transfer2^t j i8
Slowsi j8

,&/e in ^ui8
,2

& equations,
for i 51 – 3, att* 51089,D f /D58. No summation on indexi is implied.~b!

Subgrid energy transfer2^t j i8
Rapidsi j8

,&/e in ^ui8
,2

& equations, fori 51 – 3, at
t* 51089,D f /D58. No summation on indexi is implied.

FIG. 13. Subgrid energy production by the mean flow2^t j i
Rapid&^Si j

,&/P and
2^t j i

Slow&^Si j
,&/P, at timet* 5236,D f /D52.

FIG. 14. ~a! Subgrid energy transfer2^t j i8
Slowsi j8

,&/e in ^ui8
,2

& equations,
for i 51 – 3, att* 5236,D f /D52. No summation on indexi is implied. ~b!

Subgrid energy transfer2^t j i8
Rapidsi j8

,&/e in ^ui8
,2

& equations, fori 51 – 3, at
time t* 5236, D f /D52. No summation on indexi is implied. ~c! Subgrid
energy transfer~rapid and slow! in ^u18

,u28
,& equation at timet* 5236,

D f /D52.
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the rapid stress represents a back-transfer~the negative value

of 2^t j i8 si j8
,&) in the ^u38

,2
& and the^u18

,2
& equation. Re-

garding the shear stress,^u18
,u28

,&, a similar back-transfer is
observed on both the rapid and slow part, as shown in Fig.
14~c!. Such a complex transfer mechanism is difficult to in-
terpret but may be related to the presence of vortex break-
down during the transition to three-dimensional turbulence,
as well as to the simultaneous presence of large coherent
structures. To understand these particular features, we need
to investigate the transition to turbulence, but this is beyond
the scope of the present study.

c. Summary. The presence of the rapid SGS stress alters
the subgrid transfer in an anisotropic fashion. The anisotropy
is related directly to the mean flow, with the rapid part pri-
marily contributing to the streamwise component of the sub-
grid transfer in the shear layer. The rapid component has a
dominant influence at an early time when the turbulence is in
nonequilibrium. In the case of later-time, equilibrium turbu-
lence, the rapid contribution to the SGS energy transfer in-
creases with filter size and the rapid contribution to the
streamwise SGS transfer is comparable to that of the slow
term @compare Fig. 12~b! with Fig. 12~a!#. In the next sec-
tion, when we evaluate popular subgrid models, attention is
focused on the ability of these models to account for the
anisotropy induced into the grid/subgrid energy transfer by
the rapid SGS stress.

IV. EVALUATION OF SUBGRID MODELS

From the discussion of the previous sections, it is clear
that, through the rapid part, the mean velocity gradient di-
rectly affects the SGS stress tensor subgrid stress tensor and
the associated energy transfer to the small scales. The ques-
tion that then arises is whether SGS modeling has to explic-
itly account for the effect of the mean velocity gradient
manifested by the rapid SGS stress. Here, we evaluate the
ability of existing SGS models to represent the distinct prop-
erties of the rapid and slow parts of the SGS tensor. The
comparison is limited to two popular models in LES appli-
cations: the eddy viscosity Smagorinsky model and the Gal-
ilean invariant scale-similarity model. There is no separate
term explicitly depending on the mean velocity gradient,
though there is an implicit dependence in both models. Al-
though, as pointed out previously,8,9,19the Galilean-invariant
scale-similarity model has a high correlation with the SGS
stress and also allows backscatter, its use in a practical com-
putation can lead to numerical instability. Therefore, a com-
bination of these two models~the mixed model! is used in
practice with the Smagorinsky component added for numeri-
cal stability to the scale-similarity model. However, it is not
clear if there is an additional physical reason for retaining
both scale-similarity and eddy viscosity components in a
SGS model.

In accord with previous investigations, our study also
gives a high value of the correlation coefficients between the
exact SGS stress and the scale-similarity model~about 0.9
for both rapid and slow components!. We do not present
detailed results about the correlation coefficients at the tensor
level between the model predictions and exact values of the

SGS stress. Instead model validation is performed with re-
spect to the rapid and slow components of the SGS stress.
Attention is focused on whether the anisotropic nature of the
energy transfer mechanism and the high value of the SGS
shear stress associated with the limited resolution possible in
practical LES can be correctly captured by the two models
studied here.

A. Subgrid models

The Smagorinsky model represents the deviatoric part of
t i j as follows:

t i j Smag
522n tSi j

, , ~23!

whereSi j
, is the strain rate tensor of the resolved grid-scale

motion andn t is an ‘‘eddy viscosity,’’ defined by

n t5~CsD8!2A2Si j
,Si j

,. ~24!

Here,Cs is a constant~its value is usually about 0.15!, and
D8 denotes an ‘‘effective’’ filter size. This model correlates
poorly with the SGS tensor, as noted in the literature, but it is
purely dissipative and, thus, assumes one of the essential
functions of a SGS model,

The scale-similarity model is defined as:

t i j 5aLi j 5a~~ui
,uj

,!,2ui
!uj

!!. ~25!

The second filtering operation is done with a ‘‘test’’ filter
that is the same as the original ‘‘grid’’ filter. The adjustable
constant is chosen to bea51 here. The rapid and slow com-
ponents of the modeled stresses will be compared with cor-
responding exact values from the DNS. The slow part of the
Smagorinsky model is obtained by using the fluctuating
strain rate instead of the total strain rate on the rhs of Eq.
~23!, as well as on the rhs of Eq.~24! when calculating the
required eddy viscosity. The slow part of the scale-similarity
model is obtained using the fluctuating velocity instead of
the total velocity on the rhs of Eq.~25!. The rapid part of
both the Smagorinsky and scale-similarity model is obtained
by subtracting the slow part from the model prediction for
the total SGS stress.

B. A comparison with DNS results

At the early stage, since the turbulence is not fully de-
veloped, the Smagorinsky model coefficient is not well de-
fined. Therefore, a quantitative comparison with the Smago-
rinsky model is not performed with the early-time data. For
the scale-similarity model, a comparison is done using both,
the early- and late-time datasets. The important yardsticks
for the comparison are the following: first, the value of the
SGS shear stress, and second, the anisotropic energy transfer
between the mean velocity/grid-scale fluctuation/subgrid-
scale fluctuation.

Figures 15~a!–15~d! show the modeled~both Smagorin-
sky and scale-similarity models! and exact values of the total
SGS shear stress,^t12&, normalized by the centerline value
of ^u18u28&, for D f /D52, 4, 6, and 8, at a late time. It appears
that the Smagorinsky model largely underestimates this
quantity, and better agreement is obtained with the scale-
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similarity model. However, when the filter size increases,
differences with the exact DNS results also increase. It ap-
pears that, with decreasing LES resolution,a in Eq. ~26!
would have to be progressively larger for the scale-similarity
model to match the exact^t12&. This is consistent with the
recent study of Cook.25 These results are also consistent with
a conclusion from Vremanet al.26 in their LES study of the
turbulent mixing layer, that the mixed model~scale similarity
plus Smagorinsky! gives a better shear layer growth rate than
the Smagorinsky model by itself.

Figures 16~a! and 16~b! evaluate the ability of the scale-
similarity model to represent the rapid and slow parts of the
exact subgrid energy transfer terms,2^t i j8 si j8

,&, in the SGS
turbulent kinetic energy equations. The energy transfers are
evaluated using the DNS data at late time, and forD f /D
56. The coefficient used for the Smagorinsky constant is
0.15. The scale-similarity model does a good job in repre-
senting the rapid part as shown in Fig. 16~a! while it per-
forms poorly with respect to the slow part, as shown in Fig.
16~b!. The energy transfers predicted by the Smagorinsky
model are compared with the exact values in Figs. 16~c!–
16~d!. The rapid subgrid transfer is not captured by the Sma-
gorinsky model, as shown in Fig. 16~c! while the slow en-
ergy transfer is well represented, as shown in Fig. 16~d!.

Thus, it appears that the rapid part of the energy transfer is
better represented by the scale-similarity model while the
Smagorinsky model is better for capturing the energy dissi-
pation associated with the slow part.

At the early stage, the anisotropic energy transfer is
more important due to the large rapid SGS stress. Figure
17~a! @respectively,~17b!# shows the rapid~respectively,

slow! contributions to the^u18
,2

& and ^u28
,2

& equations,
while Fig. 17~c! shows the rapid and slow contributions to
the transport equation for the GS shear stress^u18

,u28
,&, at

early time, and forD f /D52. It is remarkable that the anisot-
ropy in the component energy transfers as well as the reverse
energy transfer are captured by the scale-similarity model. It
should be noted that the Smagorinsky model would not be
able to predict the reverse energy transfer.

From the above discussion it is clear that the mixed
model is better suited for complex inhomogeneous, aniso-
tropic turbulent flows. The scale-similarity part represents
the anisotropic energy transfer induced by the mean velocity
gradient through the rapid part as well as reverse energy
transfer, while the Smagorinsky part represents well the sub-
grid dissipation associated with the slow part. Thus, there is
a physically based reason for including both, the scale-

FIG. 15. ~a! A comparison between modeled and exact total SGS shear stress, at timet* 51089,D f /D52. ~b! A comparison between modeled and exact total
SGS shear stress, at timet* 51089, D f /D54. ~c! A comparison between modeled and exact total SGS shear stress, at timet* 51089, D f /D56. ~d! A
comparison between modeled and exact total SGS shear stress, at timet* 51089,D f /D58.
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similarity and the Smagorinsky parts, as is done in the mixed
model. It should be noted that the Smagorinsky constant is
set to the value ofCs50.15, which is appropriate for the
mixing layer. It may be necessary to use the dynamic Sma-
gorinsky model to predict the slow part of the SGS dissipa-
tion in more general flows.

V. INFLUENCE OF THE MEAN FLOW IN THE CASE
OF A HOMOGENEOUS SPATIAL FILTER

In this section we consider the situation when a homo-
geneous filter is used in the mixing layer, i.e., when the top
hat filter is applied only in the homogeneous flow directions
x andz. The resulting SGS tensor does not explicitly contain
the mean flow; thus, there is no rapid part. However, there
exists an effect of the mean velocity on the SGS energy
transfer that isimplicit. It is of interest to compare such
filtering to the study of Haertelet al.,23 which uses an ideal
spectral-space filter without leading to a rapid SGS compo-
nent, in particular, their analysis of the SGS energy transfer
mechanism. It should be noted that our study uses physical-
space filtering while that of Haertelet al.23 uses a spectral-
space ideal filter. Although the pipe flow and the channel
flow used in the study of Haertelet al.23 are different from

the shear layer studied here, some similarities in the influ-
ence of mean shear on the SGS stress may be anticipated. In
the near-wall buffer region, the turbulence is in a nonequi-
librium stage with the turbulence production much larger
than the dissipation; therefore, an analogy with the early
stage of a mixing layer may be drawn. In the log layer, the
turbulence is in equilibrium with production equal to dissi-
pation, which could lead to similarities with the later stage of
the mixing layer when the turbulence is fully developed.

Figures 18~a! and 18~b! show the energy transferred
from the mean flow to the subgrid scales,2^t i j &^Si j

,&, as
well as the nonlinear energy transfer between turbulent
scales,2^t i j8 si j8

,&, for the later stage and forD f /D52 and
4. The flux from the mean flow is significantly smaller than
the flux between turbulent scales. This result is in qualitative
agreement with the results in the region far from the wall
observed by Haertelet al.,23 and also with those of Domar-
adzki et al.,18 who show that the direct transfer by the mean
flow to the subgrid-scale fluctuations is relatively small.
Model predictions of the nonlinear energy transfer have been
discussed previously. The energy transfer,2^t i j &^Si j

,&, as-
sociated with the mean SGS stress, is compared with model

FIG. 16. ~a! A comparison with the scale-similarity (Li j ) model. Rapid subgrid energy transfer terms,2^t i j8
Rapidsi j8

,&, at time t* 51089,D f /D56. ~b! A
comparison with the scale-similarity (Li j ) model. Slow subgrid energy transfer terms,2^t i j8

Slowsi j8
,&, at timet* 51089,D f /D56. ~c! A comparison with the

Smagorinsky model. Rapid subgrid energy transfer terms,2^t i j8
Rapidsi j8

,&, at timet* 51089,D f /D56. ~d! A comparison with the Smagorinsky model. Slow
subgrid energy transfer terms,2^t i j8

Slowsi j8
,&, at timet* 51089,D f /D56.
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predictions in Fig. 18~c!. The scale-similarity model per-
forms better than the Smagorinsky model

Figure 19 shows the energy transfer between large and
small turbulent scales for each normal stress component,
2^t i j8 si j8

,& ~without summation on indexi! in the fully de-
veloped mixing layer. The energy transfer can be compared

with corresponding quantities obtained when filtering is ap-
plied in all three directions. The transfer is similar to that
associated with the slow part of the SGS tensor@see Fig.
12~a!#, with no evidence of the strong anisotropy associated
with the rapid component@see Fig. 12~b!#. Furthermore, the
quasi-isotropy of the SGS energy transfer agrees with the
results of Haertelet al.23 in the region far from the wall.

At the early stage, the mean flow plays a dominant role

FIG. 17. ~a! A rapid contribution to energy transfer in̂u18
,2

& and ^u28
,2

&
equations, at timet* 5236, D f /D52. A comparison with the scale-

similarity model (Li j ). ~b! A slow contribution to energy transfer in̂u18
,2

&
and ^u28

,2
& equations, at timet* 5236, D f /D52. A comparison with the

scale-similarity model (Li j ). ~c! Rapid and slow contributions to energy
transfer in thê u18

,u28
,& equation, at timet* 5236, D f /D52. A compari-

son with the scale-similarity model (Li j ).

FIG. 18. ~a! Energy transfer from mean flow to the SGS,2^t i j &^Si j
,&/e, and

energy transfer between turbulence scales,2^t i j8 si j8
,&/e, at t* 51089,

D f /D52. ~b! Energy transfer from mean flow to the SGS,2^t i j &^Si j
,&/e,

and energy transfer between turbulence scales,2^t i j8 si j8
,&/e, at t* 51089,

D f /D54. ~c! Evaluation of model predictions of energy transfer from mean
flow to the subgrid scales att*51089,D f /D54.
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in the energy transfer mechanism, as shown in Fig. 20, where
2^t i j &^Si j

,& and 2^t i j8 si j8
,& are compared forD f /D52. In

agreement with the results in the near-wall region of Haertel
et al.,23 the mean contribution,2^t i j &^Si j

,&, is larger than
the fine-scale contribution,2^t i j8 si j8

,&. When2^t i j8 si j8
,& ~no

summation on indexi! is plotted for different Reynolds stress
components~see Fig. 21!, in agreement with the observation
of Haertelet al.23 and also with previous results concerning
the slow part in the case where the filter is applied in all three
directions@see Fig. 14~a!#, a strong anisotropy in the energy
transfer mechanism clearly appears. However, unlike the
other study, which uses the spectral cutoff filter, no back-
ward transfer is observed with the physical-space filter used
here. This is consistent with an analytical prediction made by
Leslie and Quarini,12 experimentally observed by Liuet al.8

and numerically confirmed by Piomelliet al.,27 that is,
physical-space filtering significantly reduces the amount of
backward transfer with respect to spectral-space filtering.

In summary, when the filter is applied only in the homo-
geneous flow directions, the results concerning the SGS en-

ergy transfer mechanism agree qualitatively well with previ-
ous studies using the spectral cutoff filter in the literature
because the rapid component is now absent. Furthermore, it
is demonstrated that the early-time, nonequilibrium turbu-
lence in the shear layer has strongly anisotropic SGS energy
transfer analogous to that observed in near-wall turbulence
by Haertelet al.,23 while fully developed turbulence in the
shear layer has a substantially more isotropic energy ex-
change between grid and subgrid scales, similar to that in
equilibrium, log-layer turbulence.

VI. CONCLUDING REMARKS

Subgrid-scale modeling in the case of inhomogeneous
turbulent flows is considered. By definition, the mean veloc-
ity has a nonuniform gradient in the direction of inhomoge-
neity. Filtering in the inhomogeneous direction is necessary
in the LES of such flows because a computational grid suf-
ficiently fine to resolve the smallest spatial scale of the tur-
bulence in that direction is not practical. Inhomogeneity does
not permit the use of the spectral cutoff filter in that direction
and physical-space filtering provides a simple alternative.

In this paper we focus on the properties of the SGS
stress linked with the presence of mean velocity gradients. It
is shown that, in addition to the classical SGS stress tensor
due to the fluctuating velocity, a contribution that is explic-
itly connected to the mean velocity gradient is also present.
By analogy to the decomposition into rapid and slow parts of
the pressure–strain correlation in Reynolds-averaged turbu-
lence modeling, a rapid SGS stress, which depends explicitly
on the mean velocity gradient, and a slow SGS stress that
does not are defined. Any change in the mean velocity is
instantaneously reflected in the rapid SGS stress. The rapid
part induces not only significant anisotropy in the SGS stress
but also alters the energy transfer between grid and subgrid
scales of turbulence. Analysis of these two SGS stress com-
ponents using a Taylor expansion shows that the magnitude
of the rapid part can be comparable to the slow part in two
situations: first, when the turbulence is not in an equilibrium

FIG. 19. Subgrid energy transfer2^t j i8 si j8
,&/e in ^ui8

,2
& equations, fori

51 – 3, att* 51089,D f /D52. No summation on indexi is implied.

FIG. 20. Energy transfer from mean flow to the SGS,2^t i j &^Si j
,&/e, and

energy transfer between turbulence scales,2^t i j8 si j8
,&/e, at early stage,t*

5236,D f /D52.

FIG. 21. Subgrid energy transfer2^t j i8 si j8
,&/e in ^ui8

,2
& equations, fori

51 – 3, at an early stage,t* 5236, D f /D52. No summation on indexi is
implied.
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state, that is,P/e.O(1), andsecond, in equilibrium turbu-
lence when the resolution is such that the filter size is not
much smaller than the integral length scale of turbulence.A
priori tests are performed using an existing direct numerical
simulation database of the temporally evolving turbulent
mixing layer. Quantitative and qualitative agreement be-
tween numerical results and the analysis is obtained. The
numerical results also show back-transfer of energy associ-
ated with the rapid SGS stress.

When the filter is applied solely in the homogeneous
flow directions, the rapid component of the SGS stress is
absent. However, there is an implicit effect of the mean ve-
locity gradient on the SGS stress, which, from DNS of the
temporally evolving mixing layer, is found to be large at the
early-time, transitional stage and small during the late-time
stage corresponding to equilibrium turbulence. The results
concerning the SGS energy transfer mechanism agree quali-
tatively well with previous studies using the spectral cutoff
filter in the literature. Furthermore, it is demonstrated that the
early-time, nonequilibrium turbulence in the shear layer has
strongly anisotropic SGS energy transfer analogous to that
observed in near-wall turbulence, while fully developed tur-
bulence in the shear layer has a substantially more isotropic
energy exchange between grid and subgrid scales in equilib-
rium, similar to that in equilibrium, log-layer turbulence.

It is of interest to determine if existing models, which do
not have a separate explicit dependence on the mean veloc-
ity, can represent the effect of the rapid SGS stress. Two
popular SGS models, the scale-similarity and the Smagorin-
sky model, have been considered. Tests are done for the
energy transfer and for the shear stress, for both the rapid and
slow parts. It is found that the scale-similarity model repro-
duces the anisotropic and backscatter features of the energy
transfer mechanism associated with the rapid part, while the
transfer related to the slow part, usually the purely dissipa-
tive forward energy transfer, is adequately captured by the
Smagorinsky model. During thea priori test, it is also found
that the subgrid shear stress is substantial for filter sizes that
are used in practice. An important strength of the scale-
similarity model is that its predictions of the subgrid shear
stress are better than the Smagorinsky model. These findings
may explain why LES with the combination of the two
subgrid-scale models, i.e., the mixed model, has been suc-
cessful in different situations

In the present test case of the temporally evolving mix-
ing layer, even though the mean flow is one-dimensional and
not strongly inhomogeneous, the effect of the rapid part is
still manifest. It should be noted that, based on the present
work, the contribution of the rapid part of the SGS stress
tensor and the importance of the scale-similarity component
of the SGS stress model can be expected to increase in the
following examples of nonequilibrium turbulence: a rapid
distortion flow and a flow with local inhomogeneity, that is,
inhomogeneity induced by local, large-scale coherent struc-
tures. For example, a recent experimental study28 found sig-
nificant effects of the mean flow on the SGS stress during
rapid axisymmetric expansion of initially isotropic turbu-
lence, which could not be represented with the Smagorinsky

model. Similarly, an experimental study of a high-Reynolds
number cylinder wake,19 a flow with local inhomogeneity,
found that the SGS dissipation obtained by streamwise filter-
ing depended strongly on large-scale coherent structures
when conditionally averaged and, furthermore, while the
similarity model was able to capture this phenomenon the
Smagorinsky model was not.
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