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Direct numerical simulations (DNS) are performed to investigate the behaviour of a
weakly stratified shear layer in the presence of a strongly stratified region beneath
it. Both, coherent Kelvin–Helmholtz (KH) rollers and small-scale turbulence, are
observed during the evolution of the shear layer. The deep stratification measured
by the Richardson number Jd is varied to study its effect on the dynamics. In all
cases, a pycnocline is found to develop at the edges of the shear layer. The region
of maximum shear shifts downward with increasing time. Internal waves are excited,
initially by KH rollers, and later by small-scale turbulence. The wave field generated
by the KH rollers is narrowband and of stronger amplitude than the broadband wave
field generated by turbulence. Linear theory based on Doppler-shifted frequency of
the KH mode is able to predict the angle of the internal wave phase lines during the
direct generation of internal waves by KH rollers. Waves generated by turbulence
are relatively weaker with a broader range of excitation angles which, in the deep
region, tend towards a narrower band. The linear theory that works for the internal
waves excited by KH rollers does not work for the turbulence generated waves. The
momentum transported by the internal waves into the interior can be large, about
10 % of the initial momentum in the shear layer, when Jd � 0.25. Integration of the
turbulent kinetic energy budget in time and over the shear layer thickness shows
that the energy flux can be up to 17 % of the turbulent production, 33 % of the
turbulent dissipation rate and 75 % of the buoyancy flux. These numbers quantify
the dynamical importance of internal waves. In contrast to linear theory where the
effect of deep stratification on the shear layer instabilities has been found to be
weak, the present nonlinear simulations show that the evolution of the shear layer is
significantly altered because of the significant momentum and energy carried away
by the internal waves.

1. Introduction
Stratified shear flow away from boundaries has been the subject of many studies,

employing both experimental and numerical techniques. Nevertheless, there are only
a handful that study the dynamics of a stratified shear layer in the presence of an
external stratification where internal waves may be supported. Such a scenario can
occur in the natural environment when the stratification extends continuously beyond
the shear layer, and will be the focus of the current study.

† Email address for correspondence: ssarkar@ucsd.edu
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Laboratory experiments, for example, Thorpe (1973) and Koop & Browand (1979),
were the earliest systematic studies of instability and turbulence in a stratified shear
layer. In those studies, the shear zone was between two layers of constant density
and the mean shear was inflectional. Rohr et al. (1988) performed experiments of
homogeneous shear flow turbulence (constant value of shear S and stratification N)
using a salt-stratified water channel. Piccirillo & VanAtta (1997) studied the same
problem using a thermally stratified wind tunnel, and numerical simulations were
performed by Gerz, Schumann & Elghobashi (1989), Holt, Koseff & Ferziger (1992),
Kaltenbach, Gerz & Schumann (1994), Jacobitz, Sarkar & VanAtta (1997), Jacobitz
& Sarkar (1999b) and Diamessis & Nomura (2004). Numerical simulations of the
stratified shear layer (or mixing layer) between two streams with a velocity difference
have been performed using small-amplitude initial perturbations to understand the
role of stratification by Staquet & Riley (1989), Caulfield & Peltier (1994, 2000),
Smyth & Moum (2000a ,b), Staquet (2000) and Smyth, Moum & Caldwell (2001) and,
more recently, by Brucker & Sarkar (2007) who examined buoyancy effects when
the initial perturbations are turbulent. A stratified shear layer may have horizontal
shear in contrast to the vertical shear common to all the aforementioned studies. The
constant-shear example of horizontal shear was studied numerically by Jacobitz &
Sarkar (1999a) while Basak & Sarkar (2006) and Deloncle, Chomaz & Billant (2007)
have studied the case of inflectional horizontal shear.

Internal waves generated by unstable velocity shears have been observed in previous
atmospheric and oceanic studies. Wind shear is believed to be one of the principal
sources of internal wave excitation in the lower atmosphere (Einaudi, Lalas & Perona
1978, 1979). Internal waves observed in the mesosphere (Holton et al. 1995) and in
the upper stratosphere (Rosenlof 1996) are excited by non-orographic sources, for
example the Kelvin–Helmholtz (KH) instability, since orographic waves cannot reach
these altitudes. Below the surface of the equatorial oceans, alternating eastward and
westward currents (Luyten & Swallow 1976; Eriksen 1982; Firing 1987) are observed.
Eriksen (1982) has observed large-scale structures of the countercurrents persisting
for a long period of time. Moum et al. (1992) and Sun, Smyth & Moum (1998)
suggest that internal waves associated with the equatorial undercurrent can be the
main source of mixing in the thermocline. Since internal waves can transport and
redistribute momentum and energy (Eliassen & Palm 1960; Andrews & McIntyre
1978; Fritts 1982), it becomes necessary to examine the transport of the internal
waves excited by unstable shears.

A stratified shear layer with weak stratification of value J0, non-dimensionalized
with the maximum shear, that overlies an adjacent region with stronger stratification
Jd has been investigated using linear theory and two-dimensional nonlinear
simulations by Sutherland (1996). Internal waves are found to radiate downward
from the shear layer and propagate in the deep far field. It is found that internal
waves are generated by the most unstable linear mode and, from the two-dimensional
simulations that track the evolution of a KH billow, it is concluded that strong
internal waves are excited when J0 < 0.25 and Jd > 0.25. Sutherland (2006) examined
the evolution of a shear layer (also a jet) with asymmetric stratification, using linear
theory and two-dimensional simulations. The distance δ between the shear layer and
the top of the stratified region was varied along with the values of Jd . For small δ,
the shear layer instability mode was found to directly couple to the internal wave
mode and its subsequent nonlinear evolution was significantly modified. Simulations
of a jet with asymmetric stratification have been performed in two dimensions
by Skyllingstad & Denbo (1994) and Smyth & Moum (2002) to model aspects of
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the equatorial undercurrent and using three-dimensional DNS by Tse et al. (2003)
as a model for the jet at the atmospheric tropopause. Skyllingstad & Denbo (1994)
in a problem forced with wind stress and buoyancy flux identify local instabilities
as well as internal wave packets. Smyth & Moum (2002) consider a Bickley jet
with low stratification JU in the upper half and high stratification JL in the lower
half. Their simulations of cases with JU = 0.0 and 0.05, and JL = 0.25 show energetic
internal waves directed downward away from the jet. Tse et al. (2003) perform
three-dimensional simulations where the velocity and temperature profiles of the
base flow, constructed to model a jet in the atmospheric tropopause, are forced. A
quasi-equilibrium jet results with strong shear-forced turbulence in the core of the
jet where the gradient Richardson number Rig � 0.25. The edges of the jet, with
moderate-to-large values of Rig , have patchy turbulence, attributed to nonlinear
wave activity. Propagation of internal waves in the jet far field is not significant. It
is found that the change of the fluctuations from mechanical turbulence in the core
to stratified turbulence at the edges can be effectively characterized through length
scales and through budget equations for the velocity and temperature variances.

The effect of internal waves on the deepening of a mixed layer in a stratified
fluid was studied by Linden (1975). An oscillating grid was used to generate a
turbulent mixed layer on top of a layer with a constant density gradient. As the
mixed layer deepened, the density gradient was observed to increase to a maximum
in the thermocline. Internal waves were observed to propagate away from the mixed
layer. These waves caused a loss of energy available for mixing. The experiment
estimated up to 50 % reduction in the mixing rate due to the presence of internal
waves. A similar study carried out by E & Hopfinger (1986) compared the deepening
rate between a two-layer and a constant density gradient systems. Internal waves
radiating energy away from the interface only occurred in the latter case. The
energy radiation was found not to significantly affect the mass entrainment rate,
defined by E =(1/u)dD(t)/dt with D the mixed layer depth and u the r.m.s. velocity
fluctuation. The coefficients K and n in the entrainment rate relation E = KRi−n

were found to be the same in both cases, independent of the presence of internal
waves.

Internal wave propagation was also observed in the experiments of Strang &
Fernando (2001) designed to study turbulent entrainment and mixing at a sheared
density interface. A shear layer separated a light upper well-mixed turbulent layer
from a lower quiescent layer which was either constant density or linearly stratified.
Internal waves only appeared in the latter case. When the lower layer was linearly
stratified, ‘interfacial swelling’ in the shear layer was observed and argued to be
responsible for internal wave excitation. The buoyancy flux and the entrainment rate
were higher when internal waves did not propagate into the lower layer. The mass
entrainment rate was reduced by as much as 50 % in the presence of internal waves.
The ratio of the wave energy flux to the rate of change of potential energy due to
mixed-layer deepening was found to be approximately 48 %.

Sutherland & Linden (1998) quantified the effects of internal waves in an
experimental investigation of stratified fluid with shear that flows over a thin barrier.
In the experiment, the upper region was lightly stratified while the lower region had
a higher density gradient. Vortices, shed in the wake of the thin barrier, disturbed
the base of the sheared mixing region and internal waves were observed to radiate
downward. The propagating waves made angles to the vertical in the range of
45◦–60◦. The Reynolds stress was measured and it was found that approximately 7 %
of the average momentum across the shear depth was lost due to wave transport. A
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Figure 1. (a) Initial mean profiles. Each case has a temporally evolving shear layer between
two streams with velocities −�U/2 and �U/2, and initial vorticity thickness δω,0. The
maximum shear is at z = 0. The two-layer density variation corresponds to a tangent-hyperbolic
profile with J (0) = 0.1. The other density profiles correspond to a moderate linear stratification,
Js = 0.05, in the shear layer above a bottom region, z < −2.5δω,0, with uniform deep
stratification that takes the values: Jd = 0.1, 0.25 and 1.0. The initial value of bulk Richardson
number Rib,0 = 0.1 is the same for all cases. (b) Cartoon of internal wave excitation by
shear layer instabilities. The indicated group and phase velocity are relative to the lower free
stream.

two-dimensional numerical simulation was also performed. The simulation showed a
higher value of the momentum extraction from the mean flow. The authors proposed
that internal waves propagating at nearly 45◦ angle with the vertical were preferred
since, through nonlinear interaction, they were capable of modifying the mean flow
in a manner which fostered their continual generation.

In the present study, we use direct numerical simulations (DNS) to investigate the
problem of an inhomogeneous stratified shear layer located between a weakly stratified
upper layer and strongly stratified lower layer (schematic illustration in figure 1).
Unlike previous simulations of this shear layer configuration, the present three-
dimensional study allows the examination of internal wave dynamics in the presence
of realistic turbulent mixing. The flow is seeded with small-amplitude perturbations.
The deep stratification is varied to elucidate its effect on the evolution of both the
sheared region and the internal wave field. We examine the DNS results to help answer
the following questions: How does the thickening of the shear layer depend on deep
stratification? Does linear theory provide guidance to characterize the internal waves
in these fully nonlinear three-dimensional simulations? What are the relative roles of
KH rollers and small-scale three-dimensional turbulence insofar as internal waves?
Are the mass flux, momentum flux and energy flux carried away by the internal waves
significant?

2. Formulation
Figure 1 is a schematic illustration of the simulated shear layer between two layers

of fluid moving in opposite directions with a velocity difference �U ∗ and a vertical
density stratification owing to a temperature variation. The flow evolves temporally
with statistics that are homogeneous in the streamwise (x) and spanwise (y) directions.
The horizontal velocity varies continuously in the vertical cross-stream direction (z)



Dynamics of a stratified shear layer above a region of uniform stratification 195

with a hyperbolic tangent profile,

〈u∗〉 = −�U ∗

2
tanh

(
2z∗

δ∗
ω,0

)
,

where the initial vorticity thickness is defined by δ∗
ω,0 = �U ∗/(d〈u∗〉/dz∗)max . Here,

the superscript * denotes dimensional quantities. The squared buoyancy frequency
is defined by N∗2 = −(g∗/ρ∗

0 )d〈ρ∗〉/dz∗ and a non-dimensional measure of the
stratification is the Richardson number, J (z) = N∗(z∗)2δ∗2

ω,0/�U ∗2. Two types of density
profile are considered. A two-layer density variation, corresponding to the classical
Thorpe problem, is defined with a tangent-hyperbolic profile obtained by replacing
�U ∗ in the mean velocity profile with the density change �ρ∗. The value of �ρ∗

is chosen to set J (z = 0) = 0.1. The second type of density profile corresponds to a
weakly stratified shear layer above a region of deep stratification. The fluid above and
inside the shear layer region is linearly stratified with Richardson number, Js = 0.05.
At depth z∗ = −2.5δ∗

ω,0 the stratification changes to the value of the Richardson
number specified in the deep region, Jd . Three simulations are performed with deep
stratification, Jd =0.1, 0.25 and 1.0. According to linear analysis, the smallest Jd case
does not permit propagating internal waves while the other two do. The density
profiles are chosen so that the value of the bulk Richardson number Rib defined by
(2.4) for a shear layer has the same initial value for all four simulations.

The initial vorticity thickness δ∗
ω,0, the density jump �ρ∗

0 across twice the
initial vorticity thickness and the velocity difference �U ∗ are used for non-
dimensionalization. Henceforth, u, x, y, z, p, ρ, t will denote non-dimensional variables
and, with the Boussinesq approximation, the governing equations can be written as
follows:

∂uk

∂xk

= 0, (2.1)

∂ui

∂t
+

∂(ukui)

∂xk

= − ∂p

∂xi

+
1

Re0

∂2ui

∂xk∂xk

− Rib,0ρ
′δi3, (2.2)

∂ρ

∂t
+

∂(ukρ)

∂xk

=
1

Re0Pr

∂2ρ

∂xk∂xk

, (2.3)

where

Re0 =
�U ∗δ∗

ω,0

ν∗ , Rib,0 =
g∗�ρ∗

0δ
∗
ω,0

ρ∗
0�U ∗2

= g
�ρ∗

0

ρ∗
0

, P r =
ν∗

κ∗ . (2.4)

Here, ν∗ is the kinematic viscosity and κ∗ is the molecular diffusivity. The initial bulk
Richardson number can be interpreted as a ratio of potential energy to kinetic energy
or, alternatively, non-dimensional reduced gravity. Subscript 0 denotes a value at
initial time. All simulations are run with Re0 = 1280, Pr = 1 and Rib,0 = 0.1. Although
thermally stratified water has Pr = 5–10 depending on water temperature, we choose
Pr = 1 to avoid the increase in computational resources, necessary at high Pr . The
evolution of the shear layer at different values of Jd is examined. Three simulations
are performed with Jd = 0.1, 0.25 and 1.0. A two-layer stratified shear layer is also
simulated at the same initial Re0, Pr and Rib,0 for comparison.

The domain size is 51.6 × 17.2 × 96.57 and the numbers of gridpoints in x, y, z
directions are 384 × 128 × 512, respectively. The grid is uniform in the streamwise
and spanwise directions with a spacing of 0.134. In the vertical direction the grid is
uniform in the region −7.5 � z � 2.5 with a spacing of 0.0756. Outside this region
the grid is mildly stretched at ratio of 2 % giving a maximum spacing of 0.475.
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A second-order finite difference method on a staggered grid is used for spatial
derivatives and a third-order low storage Runge–Kutta method is used for time
advancement. The flow is initialized with low amplitude velocity perturbations. These
fluctuations have an initial broadband spectrum given by

E(k) � k4 exp

[
− 2

(
k

k0

)2]
,

where k0 is set such that the spectrum peaks at 1.7. The initial velocity fluctuations
are introduced in the shear layer with the peak values set at 1 % (�U ). The noise is
restricted to the shear region with the shape function A(z), where

A(z) = exp(−z2).

Periodic boundary conditions are used in the streamwise and spanwise directions.
Dirichlet boundary conditions are enforced for horizontal velocities and pressure
while vertical velocity and density have the following Neumann conditions:

u(zmin) =
1

2
, u(zmax) = −1

2
,

v(zmin) = v(zmax) = 0,

p(zmin) = p(zmax) = 0,

∂w

∂z
(zmin) =

∂w

∂z
(zmax) = 0,

∂ρ

∂z
(zmax) = −Js

g
,

∂ρ

∂z
(zmin) = −Jd

g
.

A sponge region is employed at the top (z > zt
max =15) and the bottom (z < zt

min =
−50) boundaries to control spurious reflections of internal waves propagating out of
the domain. The test domain of interest, zt

min < z < zt
max , excludes the sponge region.

The velocities and density in the sponge region are relaxed by adding to the right-hand
side of (2.2) and (2.3) a term of the form

−φ(z)[ui(xi, t) − 〈u〉i(z, t = 0)],

−φ(z)[ρ(xi, t) − 〈ρ〉(z, t = 0)].

The damping function φ(z) increases quadratically from φ =0 to 1.0 in a region of
thickness 15 utilizing 30 gridpoints at each boundary. Flow instabilities, notably KH
rollers, form followed by a transition into small-scale three-dimensional turbulence.
Simulations are continued until most of the fluctuation energy inside the shear layer
is dissipated, roughly at tf = 250 time units (δ∗

ω,0/�U ∗). Details of the numerical
methods used in this study can be found in Basak & Sarkar (2006) and Brucker &
Sarkar (2007).

3. Evolution of the shear layer
The KH instability mode is initially amplified, KH rollers develop, secondary

instabilities follow and, finally, there is breakdown to three-dimensional turbu-
lence (Thorpe 1973; Koop & Browand 1979; Staquet & Riley 1989; Caulfield & Peltier
2000; Smyth & Moum 2000b). In the following text, we show the strong influence
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Figure 2. (a) Vorticity thickness δω . (b) Bulk Richardson number Rib . (c) Momentum
thickness δθ . (d ) Bulk Richardson number Rib,θ .

of the deep stratification on the flow statistics starting with overall quantities: the
thickness of the shear layer and the bulk Richardson number Rib followed by an
account of how the mean profiles develop in time.

Figure 2(a) shows the evolution of the vorticity thickness δω(t) = 1/(d〈u〉/dz)max , a
typically used measure of the thickness of the sheared region while figure 2(b) shows
the evolution of the bulk Richardson number defined by

Rib(t) =
g∗�ρ∗(t)δ∗

ω(t)

ρ∗
0�U ∗2

=
g�ρ∗

0

ρ∗
0

�ρ(t)δω(t), (3.1)

where �ρ(t) is the density difference across z = −δω(t) and z = δω(t). Figure 2(a) shows
that the thickness growth rate is initially smaller in the two-layer case since the value
of centreline Richardson number, J (0) = 0.1, is larger than the corresponding value
of J (0) = 0.05 in the cases with deep stratification. The thickness evolves in three
different stages. The stage from t = 0 to 30 is not a focus of the discussion since
the evolution of the shear layer during this period is identical in all cases. After
this initial period, there is a second stage where visualization of the vorticity field
shows the formation of distinct and dominant KH rollers which increase in size by
pairing or amalgamation. We denote this period as the KH regime. Later, when rollers
break down, the shear layer enters a third regime, turbulence, wherein small-scale
three-dimensional features dominate the vorticity field. The transition time between
the second and third regimes is different among cases. In the two-layer case, the
transition time occurs late at t = 130 while it is earlier, approximately t = 100, in Jd
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cases. To ease the discussion, from this point we indicate t =100 as the transitional
time for all Jd cases. This is the time when the vorticity thickness exhibits a small
reduction in size before the growth rate increases due to turbulent stirring. In the KH
regime, the vorticity thickness δω grows at slightly higher rate in the Jd cases than in
the two-layer case. The growth rate dδω/dt is 0.045 in the Jd cases and 0.036 in the
two-layer case.

In the turbulent regime, there is the following qualitative difference between the
two-layer case and the cases with ambient stratification: the shear region in the former
approaches an approximately constant thickness while the shear region continues to
grow in the latter, see figure 2(a). The asymptotic thickness in the two-layer case
corresponds to Rib � 0.38, a value within the range measured in previous numerical
and experimental studies as reviewed by Smyth & Moum (2000a). In the Jd cases,
there is a secondary growth that is linear as in the KH regime but at a more moderate
rate, approximately dδω/dt = 0.004, with little variation among the different Jd cases.
Viscous growth is not the primary cause since a laminar shear layer whose thickness
is proportional to

√
t/Re does not grow linearly and the numerical value of the

viscous growth rate is smaller than the observed value. The secondary growth in the
turbulence regime strongly influences the evolution of the bulk Richardson number
Rib as shown in figure 2(b). Rib grows vigorously in case Jd = 1.0 showing a strong
effect of the deep stratification. In all cases the velocity difference does not vary with
time so that, according to (3.1), a growth in the thickness δω or in �ρ can cause
the observed growth in Rib. Case Jd = 0.10 has a larger thickness than case Jd =1.0;
however, it is the latter that has the larger value of Rib, nearly twice the corresponding
value in the former case. The difference is entirely due to a stronger density gradient
across the layer. Thus, the small thickness growth at late time, amplified by a strong
external density gradient, results in substantial growth in Rib.

Another measure of shear layer thickness is the momentum thickness δθ defined by

δθ =

∫ zu

zl

(
1

4
− 〈u〉2

)
dz. (3.2)

Depths zu and zl are upper and lower bounds of the shear layer where the turbulence
production is approximately zero but the Reynolds shear stress 〈u′w′〉 is not necessarily
zero. Compare figure 2(a) to figure 2(c), the evolution of δω and δθ are similar in the
two-layer case, but the Jd cases show strong difference. The secondary growth that
was exhibited by δω is much smaller in δθ . An analogue of Rib(t) is Rib,θ (t) obtained
by substituting δω(t) on the right-hand side of (3.1) by 4δθ (t) and letting �ρ(t) be
the density change over 4δθ (t). The factor of 4 ensures that Rib and Rib,θ have the
same value for a tangent-hyperbolic velocity profile. Figure 2(d ) shows the evolution
of Rib,θ (t). Similarly to Rib, the quantity Rib,θ continues to grow at late time but at
a significantly smaller rate. Here, the small but non-zero secondary growth, barely
visible in the evolution of δθ , is magnified by the density difference across the shear
layer.

As the shear layer evolves in time, pycnoclines (regions with large N) are observed at
the edges of the layer. The development of an overshoot in density gradient is shown
with profiles of non-dimensional squared buoyancy frequency N2 in figure 3(a, b).
The pycnoclines begin to form as soon as the shear layer starts stirring the ambient
stratification profile. At first, the formation is similar at both edges. Later, the
pycnocline at the bottom edge merges into the strong background density gradient
in the bottom region, while the one at the top persists for a long period of time. The
density gradient in the pycnocline is unsteady, growing at first, and then decaying due
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Figure 3. Profiles of squared buoyancy frequency N2 for Jd = 0.25 (a) in KH regime,
(b) in turbulence regime.
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Figure 4. Mean shear profiles in case Jd = 0.25 (a) in KH regime, (b) in turbulence regime.

to the buoyancy-induced reduction in vertical mixing. The formation of a pycnocline,
a result of the mixing of a density gradient by inhomogeneous turbulence, has been
observed in previous studies (Linden 1975; Sutherland & Linden 1998; Taylor &
Sarkar 2007). The evolution of the mean shear is plotted in figure 4. The evolution
during the initial period, t < 60, is typical of a shear layer, namely, the profile thickens
and the peak shear at z = 0 diminishes. However, as shown in figure 4(b), later the
mean shear develops local peaks at the upper and lower flanks. The reason is that the
enhanced values of N2 (pycnoclines) at the flanks inhibit the mixing of momentum
relative to the centre of the shear layer allowing mean shear at the flanks to be larger
than at the centreline. The bottom peak of mean shear is reminiscent of the elevated
shear seen at the base of the mixed layer in observations of the transition layer in the
upper ocean (D’Asaro et al. 1995; Weller & Plueddemann 1996; Johnston & Rudnick
submitted).

The gradient Richardson number Rig(z) = N2/(d〈u〉/dz)2 is plotted at several times
for case Jd = 0.25 in figure 5. The profiles of N2 and d〈u〉/dz were earlier shown
in figures 3 and 4, respectively. The double hump in the velocity gradient profile is
also seen in the Rig profile at late times. The late-time behaviour of the gradient
Richardson number is governed by the velocity gradients. The downward shift of the
shear peak can lead to a reduction in the gradient Richardson number at the edges of
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the shear layer at late times. In ocean and atmospheric models, the turbulent mass and
momentum transport are typically parameterized in terms of the gradient Richardson
number. Specifically, the mixing of mass and momentum due to turbulence is set to
zero once the gradient Richardson number reaches a critical value, usually between
0.25 and 1.0. When this type of parameterization is utilized, the shear layer can no
longer grow. The spatial profiles of d〈u〉/dz and N2 and hence Rig are fixed. By fixing
these spatial profiles the secondary (late-time) growth seen in Rib (figure 2b) would
be missed as would be the late-time evolution of Rig(z).

4. Visualization of the shear layer evolution
Visualizations of the spanwise vorticity and the full density field for the two-layer

and Jd = 0.25 cases illustrate the strong effect of deep stratification on the evolution
of the shear layer. Comparisons are also made to the stratified two-layer case of Koop
& Browand (1979) and Smyth & Moum (2000a ,b).

The spanwise vorticity in the two-layer case on the plane y = 8.5 at t = 70, 100, 120
and 160 are shown in figure 6(a–d ), respectively. At t =70 the roll-up is just begin-
ning, and by t = 100 there is evidence of pairing. At t = 120 the pairing has completed
and the vortices start to break down into small-scale turbulence. Finally, at t =160
there is little evidence of large-scale vortical structures, which have been replaced
with a largely disordered field of turbulent motion with smaller length scale. The
visualizations presented here are qualitatively similar to the computations of Smyth
& Moum (2000a), and to the spatially evolving shear layer studied by Koop &
Browand (1979). The roll-up, pairing and breakdown phases in the x–z plane look
very similar to those in Koop & Browand (1979). The coherence in the braid region
visualized in the x–y plane, not shown, also shows good qualitative agreement with
their study.

The evolution of the spanwise vorticity for the Jd = 0.25 case is shown in figure 7(a–
d ) at similar times to those in the two-layer case. In figure 7(a) there is already
evidence of smaller scale disorder, x ≈ 38. Figure 7(b) shows no evidence of pairing,
but rather a breakdown, not seen until much later in the two-layer case. The vorticity
in figure 7(b) looks more similar to figure 6(c) rather than figure 6(b). The edges of
the layer containing significant vorticity in the Jd = 0.25 case remain much flatter,
with respect to z, than those in the two-layer case. Clearly, the presence of the lower
stratification leads to significantly different vertical structure than the one in the
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Figure 6. Spanwise vorticity ω2 in x–z plane at y = 8.5 in two-layer case.
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two-layer case. The explanation is as follows: Since the fundamental frequency of the
most unstable mode, by linear theory, is affected little by the presence of the deep
stratification (Drazin, Zaturska & Banks 1979) the difference must be in the nonlinear
portion of the evolution. The first nonlinear process to occur in the two-layer case is
pairing. As noted above pairing is evident in figure 6(b) and has been disrupted in
figure 7(b). This lack of pairing was also observed by Strang & Fernando (2001) who
were investigating the upper limit of KH formation in terms of the bulk Richardson
number. Their stratification was so strong as to eventually suppress the formation
of KH rollers. Here, the rollers form but are unable to pair because the lower fluid
is too heavy to be displaced above the upper fluid. Like the two-layer case, the thin
braid-like regions extend throughout the entire spanwise domain until the rollers
begin to breakdown at which time the spanwise coherence is lost.

The density field provides a perspective on mixing by the flow instabilities and
turbulence. The full density field is visualized for the two-layer and Jd = 0.25 cases
in figures 8 and 9, respectively. Figures 8(a) and 9(a) show the density field in the
early stage of KH roller formation. As previously mentioned, the deep stratification
has little effect on the disturbance wavelength. However, breakdown to small-scale
mixing occurs earlier in the presence of deep stratification. This breakdown is clearly
evident at x ≈ 38 in figure 9(b) where regions of mixed fluid have replaced the pairing
that occurs in the two-layer case at similar time (figure 8b). In figure 8(b–c) there
are regions of mixed fluid that have been completely submersed in regions of higher
density, this behaviour is absent in the Jd = 0.25 case. The deep stratification prevents
the heavy fluid from being lifted above the lighter fluid. At late time the interface
between the two fluids is thinner and much smoother in the Jd = 0.25 case relative to
the two-layer case (compare figure 9d to figure 8d ).

5. Internal wave field
Internal gravity waves that propagate into the stratified region beneath the shear

layer are observed during the KH stage in the two cases with Jd = 0.25 and 1.0 and,
during the later turbulent stage, internal waves are observed in all three cases. The
internal wave field is visualized with instantaneous x–z slices of ∂w′/∂z at various
times in figure 10. Since the top region is weakly stratified, Js = 0.05 in all cases, the
propagation of internal waves above the shear layer is insignificant. At the base of
the shear layer, the phase lines are directed downward and to the left, thus opposing
the free stream. The phase lines move upward and, consistent with internal gravity
waves, the wave energy moves downward. Phase lines are parallel to the wave group
velocity vector, cg , relative to the bottom free stream velocity. In the present study,
cg transports energy away from the shear region into the bottom deep region.

During the KH regime, waves are excited by KH rollers, analogous to waves
excited by flow over a surface corrugation of prescribed wavelength. Let θ be the
angle made by the phase lines (equivalently, cg) with the vertical. Figure 10(c, e) shows
that, in the KH regime, there is a preferred value for θ: 32◦–38◦ when Jd =0.25 and
62◦–68◦ when Jd = 1.0. In figure 11, the horizontal wavenumber spectrum at early
time, t = 50, in the centre of the shear layer shows a strong peak at kδω,0 = 0.85 ± 0.06
which corresponds to λKH =(7.4 ± 0.5)δω,0, comparable to the wavelength of the most
unstable mode 7.2δω,0 obtained by linear inviscid theory (Monkewitz & Huerre 1982).
(The error bar reported in the wavenumber k is the ratio of π over the sampling
period.) The spectrum at depth z = −2.5δω,0, a location at the edge of the shear layer,
and at t = 50 also shows a peak at the same wavenumber, showing a strong coupling
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Figure 8. Density field ρ in x–z plane at y = 8.5 in two-layer case.
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Figure 10. Slices of ∂w′/∂z in the x–z plane at y = 8.5. Strong waves are observed in case
Jd = 0.25 (c, d ) and Jd = 1.0 (e, f ). The left panels correspond to an early time in the KH
regime; the right panels correspond to a later time in the turbulence regime. In the case
of Jd = 0.1, the internal wave field is negligible in the KH regime (a) but noticeable in the
turbulent regime (b). The dashed line in (c, e) shows the propagating angles predicted by linear
wave theory. The scale ranges from −0.01 (black) to 0.01 (white).

between the internal waves outside the shear layer and the coherent KH rollers inside
the shear layer. Since the rollers are spanwise coherent, the streamwise wavenumber
can be considered to represent the horizontal wavenumber for both the rollers and
the KH-excited internal waves. The horizontal wavenumber spectra at later time,
t = 100, are also shown in figure 11. The late-time spectrum inside the shear layer is
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Figure 11. Spanwise-averaged power spectra of the vertical velocity on the horizontal
centre-plane, z = 0, and at the bottom edge of the shear layer, z = −2.5, in case Jd = 0.25.
Two different times are shown.

broadband without a discrete peak at the KH mode. Note that the dependence of the
most unstable wavelength on the stratification in the shear layer, Js , is weak (Hazel
1972) and on the deep stratification is also weak (Drazin et al. 1979). Therefore, the
wavelength (7.4 ± 0.5)δω,0 is taken to be representative of all simulated cases.

Linear stability theory that gives the value of the most unstable KH mode in
the generation region, combined with linear internal wave theory, can explain the
preference for a characteristic angle of the early-time waves shown in figure 10(c, e)
as will be demonstrated now. Since the bottom stream moves with a fluid velocity
of 0.5�U , the apparent frequency ω measured in the simulation frame (stationary in
this study) is related to the intrinsic frequency Ω measured in the frame moving with
the free stream fluid in the bottom region by

ω = Ω + 0.5�Uk. (5.1)

The mean streamwise velocity at z =0 is 〈u〉 =0 so that the KH rollers can be
approximated to be stationary, i.e. ω = 0, then

Ω = −0.5�UkKH = (0.43 ± 0.03)
�U

δω,0

, (5.2)

where kKH is chosen to be negative corresponding to waves propagating in the
negative x direction with respect to the bottom free stream.

According to linear theory, internal gravity waves will propagate in a medium if
the magnitude of the intrinsic frequency Ω is less than the buoyancy frequency N

of that medium. Equation (5.2) then implies that KH-produced internal waves are
possible only if the ambient stratification satisfies the following condition:

Jd > 0.18. (5.3)

Consistent with the above condition, internal waves are not observed during the
KH regime in the Jd = 0.10 case shown in figure 10(a). In contrast, there is strong
excitation of internal waves in cases with Jd = 0.25 and 1.0 as shown in figure 10(c, e).
In order to calculate the internal wave phase angle, we combine (5.2) with the linear
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dispersion relation for internal gravity waves to obtain,

cos(θ) =
Ω

N
=

0.43 ± 0.03√
Jd

. (5.4)

According to the prediction of linear theory (5.4) the angle made by the phase
lines with the vertical is θ = 31◦ ± 7◦ when Jd = 0.25 and θ = 65◦ ± 2◦ when Jd = 1.0.
Figure 10(c, e) shows phase lines with θ in the range of 32◦–38◦ and 62◦–68◦ for
cases Jd = 0.25 and Jd = 1.0, respectively. Evidently, there is very good quantitative
agreement between the prediction of linear theory and the internal wave angles
observed in the present fully nonlinear simulations.

The temporal frequency and wavenumber content of the observed internal waves
is further quantified as follows. Part (a) of figures 12–14 shows the time series of
∂w/∂z measured on a streamwise line located at y = 8.5 and z = −10 for cases with
Jd = 0.25, 1.0 and 0.1, respectively. The time series is recorded in the stationary
simulation frame. Clearly, the initial wave field during 40< t < 100 due to KH rollers
is stationary and thus the apparent frequency ω is zero. In part (b) of these figures,
the ∂w/∂z field is mapped into the frame moving at the free stream velocity in the
bottom region by

x ′ = x − 〈u〉t. (5.5)

where 〈u〉 at this location is close to 0.5�U . The power spectra of the mapped
field are computed to obtain the intrinsic frequency Ω and the results are shown
in part (c) of figures 12–14. Both cases Jd = 0.25 and 1.0 show a strong peak at
kδω,0 = 0.85 ± 0.06, which is identical to the wavenumber of the most unstable KH
mode kKH . The temporal frequency peaks at Ω = 0.43 ± 0.05 and (0.41 ± 0.05)�U/δω,0

in case Jd = 0.25 and 1.0, respectively. The error bars in the wavenumber and frequency
are due to the finite values of spatial length and temporal period in the data that is
available to compute the spectra. The diagonal solid line in part (c) of the figures
represents the dispersion relation Ω = 0.5�Uk. For cases, Jd = 0.25 and 1.0, these
diagonal lines pass through the (Ω, k) location of peak power spectrum, and are
consistent with the shape of the Ω–k contours. Thus, the computed frequencies agree
well with the frequency predicted by linear theory (5.2).

Although the KH rollers cannot excite internal waves in case Jd =0.1 as discussed
previously, the thickening of rollers by diffusion and during the pairing process
generates disturbances at smaller wavenumber, i.e. larger wavelength such that the
radiation condition is met. Figure 14(a) shows the presence of such internal waves.
The power spectrum shown in figure 14(c) shows a peak at kδω,0 = 0.61 ± 0.06 and
Ω = (0.25 ± 0.06) + �U/δω,0, resulting in θ = 38◦ ± 18◦. The dispersion relation also
holds in this case. The solid line slightly deviates from the peak location because the
wave packets have a small positive x -velocity in the stationary frame as shown in
figure 14(a).

At later time, in the turbulence regime, internal waves continue to be generated
by the shear layer. However, as shown by the right panels of figure 10, the phase
lines in the vicinity of the shear layer become less structured and the amplitudes
are smaller compared to those generated by the rollers. Since the turbulence has a
broadband spectrum, turbulence-generated waves are excited over a broad range
of angles as shown in figure 10(b, d, f ) in the region beneath the shear layer.
The wavenumber spectrum, earlier shown in figure 11, indicates that late-time
fluctuations are broadband without a discrete peak at the fundamental KH mode.
Turbulence-generated internal waves are often observed to eventually propagate at
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Figure 12. Case Jd =0.25: (a) Time series of ∂w/∂z field at a streamwise line, z = −10,
y =8.5, in the stationary laboratory frame; (b) the wave field in (a) limited to the duration
of the KH regime and mapped to a frame moving with the bottom free stream velocity; (c)
power spectrum of the field shown in (b); (d ) similar to wave field shown in (b) but in the
turbulence regime; (e) power spectrum of the field shown in (d ). The scale level in (a, b, d )
ranges from −0.01 (black) to 0.01 (white). The contour levels in (c, e) are given in log scale.
The vertical dashed line in (c, e) indicates the buoyancy frequency; the diagonal solid line
shows the dispersion relation Ω = (�U/2) k.
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Figure 13. Case Jd = 1.0: see caption of figure 12.

a narrowband of angles around θ = 45◦, although they might span a wide frequency
range in the region of generation. The narrowband of propagation angles has been
observed in laboratory experiments of a shear layer (Sutherland & Linden 1998)
and grid turbulence (Dohan & Sutherland 2003), and in a numerical simulation of a
turbulent bottom boundary layer by Taylor & Sarkar (2007). The phase lines of the
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Figure 14. Case Jd = 0.1: see caption of figure 12.

turbulence-generated waves observed at later time in the Jd = 0.1 case also cluster
around 45◦ in the deep region, as shown by figure 10(b). Taylor & Sarkar (2007)
offer the following explanation for their boundary-layer-generated waves that is based
on frequency-specific viscous decay: both, high- and low-frequency waves, have low
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Figure 15. Density variation �tρ defined in (6.2), in two-layer case.

vertical group velocity, larger time of flight to a given vertical level and large viscous
attenuation leaving behind mid-frequency waves clustered around θ = 45◦.

Part (e) of figures 12–14 gives the power spectra of the late-time internal waves
in a frame moving with the free stream velocity. The peak intrinsic frequencies in
cases Jd = 0.1, 0.25 and 1.0 are 0.21 ± 0.04, 0.31 ± 0.04 and (0.47 ± 0.04)�U/δω,0,
which correspond to θ = 48◦ ± 10◦, 52◦ ± 6◦ and 62◦ ± 3◦, respectively. The range of
wavenumbers in the power spectra is broader than the early-time spectra in part (c)
of these figures. Furthermore, the solid diagonal line, Ω =(�U/2)k is not consistent
with the observed power spectrum, showing that the theory that was demonstrated
for the KH-generated waves does not work for the late-time turbulence-generated
waves.

6. Mass transport
Linear wave theory predicts that there is no net mass transport by internal waves

over a wave period; however, we observe an accumulation of mass in the region near
the shear layer. We will show below that the observed mass gain is due to molecular
diffusion. The density gradient at the bottom is more negative than at the top surface
resulting in an accumulation of mass in the shear layer.

Take the horizontal average of the density equation (2.3),

∂〈ρ〉
∂t

= −∂〈ρ ′w′〉
∂z

+
1

Re0Pr

∂2〈ρ〉
∂z2

, (6.1)

where 〈·〉 denotes average quantity. The density change in time �tρ can be defined
by

�tρ = 〈ρ〉(z, t) − 〈ρ〉(z, t = 0), (6.2)

and the net mass accumulation �tm is the spatial integral of �tρ from z = zl to zu.
The depths zl and zu are chosen away from the shear layer where the mean density
gradient does not vary in time. Integration of (6.1) in space and time results in

�tm =

∫ zu

zl

�tρ dz =

∫ t

0

〈ρ ′w′〉(zl) dt +
1

Re0Pr

�U 2

gδω,0

(Jd − Js)t, (6.3)

where the vertical mass flux 〈ρ ′w′〉 at zu is negligible. The left-hand side of (6.3) gives
the net mass gain �tm in the shear layer. Figure 15 shows profiles of �tρ at various
times in the two-layer case. As the shear layer evolves, the upper portion gets heavier
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Figure 16. Density variation, �tρ defined in (6.2), in case Jd = 0.25 (a) in KH regime,
(b) in turbulence regime.

while the lower portion gets lighter as a result of mixing. The spatial integration of
any of the profiles in this figure, i.e. the left-hand side of (6.3), yields zero mass gain.
This agrees with the right-hand side since there is neither mass flux 〈ρ ′w′〉 nor density
gradient outside the shear region in the two-layer case.

In the Jd cases, the mixing in the shear layer is similar but there is an accumulation
of mass in the transition region where Js merges with Jd . Figure 16(a) shows the
density variation profiles in case Jd = 0.25 during the KH regime. The figure shows
density variation �tρ due to shear mixing around the shear centre z = 0 accompanied
by variation due to viscous diffusion in the transition region around z = −2.5. At
t = 40, the variation due to diffusion is larger than that due to shear mixing. As the
shear layer evolves, the mixing region thickens until it reaches the transition region.
The growth of the mixing region is restrained by the presence of the transition region
when compared to the two-layer case. The transition region exhibits insignificant
thickness growth in time. In the turbulence regime, as shown in figure 16(b), the
mixing due to shear becomes steady but the viscous mass diffusion into the transition
region continues. The density variation due to diffusion outgrows the effect of mixing
at late time. It is noted that, according to the diffusive term in (6.3), the region
of maximum accumulation has the largest difference in density gradient across the
region. Thus, the transition region indeed shows the maximum density variation.

According to linear wave theory, internal waves do not transport mass, i.e. the
integration of vertical mass flux 〈ρ ′w′〉 over a wave period is zero. Figure 17(a)
shows the time evolution of the mass flux across depth z = −5 in the Jd cases. The
profiles show an upward flux trailed by a downward flux. However, the upward flux
is stronger than the downward resulting in a net upward flux. The imbalance is due
to the unsteady decaying source in the shear layer. Although there is a mass transport
due to internal waves, the gain is small relative to the diffusive mass accumulation as
shown in figure 17(b). In the figure, the dots represent the net mass gain in the shear
layer �tm calculated using the right-hand side of (6.3). The dashed line shows the
gain due to solely the diffusive term on the right-hand side. In the computation, we
take zl = −5 and zu = 5 where the density gradient does not vary in time. It is obvious
that the mass accumulation inside the shear layer is mainly contributed by diffusion.
The effect from the internal waves during the period t = 60–130 when the wave flux
〈ρ ′w′〉 is strong leads to no net mass gain.
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Figure 17. (a) Vertical mass fluxes at z = −5. (b) Net mass gain inside the shear layer in case
Jd = 0.25. The dots show the net mass gain in the shear layer. The dashed line denotes the
diffusive contribution.
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Figure 18. Momentum thickness: (a) upper portion δθ,u, (b) lower portion δθ,l .

7. Momentum transport
Internal waves provide a viable route for momentum transport from a region with

instabilities and turbulence to an external quiescent region. In order to quantify the
momentum loss due to wave excitation, we examine the evolution of the momentum
thickness of the shear layer. The momentum thickness δθ was defined previously by
(3.2). Since the stratification in the top and bottom regions is different, (3.2) is split
into upper and lower portions,

δθ = δθ,u + δθ,l =

∫ z0

zl

(
1

4
− 〈u〉2

)
dz +

∫ zu

z0

(
1

4
− 〈u〉2

)
dz, (7.1)

where z0 is the location of zero velocity. Figure 18(a, b) shows the time evolution
of the momentum thickness in the upper and lower portions, respectively. It is
evident that the shear layer grows asymmetrically. The asymmetry is related to the
stratification intensity in the deep layer. In case Jd = 0.10, the upper and lower
portions grow similarly. When Jd increases, the lower portion grows significantly less.
In case Jd =0.25 where strong internal waves are observed in the bottom region,
the top portion grows exactly as in case Jd = 0.10. However, the bottom portion
is nearly 15 % smaller. Comparing case Jd = 1.0 to case Jd =0.25, it is observed
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that the thickness growth is less in both upper and lower portions. Stratification
decreases overall turbulence production in the core of the shear layer but enhances
Reynolds shear stress at the boundaries by allowing internal waves. In order to
distinguish between these two features, it is necessary to make precise the quantities
that contribute to the thickness growth. Differentiating each portion of (7.1) in time
yields

dδθ,u

dt
= −

∫ zu

z0

d〈u〉2

dt
dz,

(7.2)
dδθ,l

dt
= −

∫ z0

zl

d〈u〉2

dt
dz.

When the x-component of the momentum equation is averaged in the horizontal
directions and the result is multiplied with the mean velocity 〈u〉, we obtain

1

2

d〈u〉2

dt
= 〈u′w′〉d〈u〉

dz
− d

dz
[〈u〉〈u′w′〉] − 1

Re0

(
d〈u〉
dz

)2

+
1

Re0

d

dz

[
〈u〉d〈u〉

dz

]
. (7.3)

Substitution of the above result into (7.2) leads to the following expression for the
temporal rate of change of momentum thickness:

dδθ,u

dt
= 2

∫ zu

z0

[
P +

1

Re

(
d〈u〉
dz

)2
]

dz − 〈u′w′〉(z = zu),

(7.4)
dδθ,l

dt
= 2

∫ z0

zl

[
P +

1

Re

(
d〈u〉
dz

)2
]

dz − 〈u′w′〉(z = zl).

Here, P = −〈u′w′〉(d〈u〉/dz) is the turbulence production. We have used the conditions
that 〈u〉 = −1/2, 0, 1/2 at z = zu, 0, zl , respectively. The last terms in (7.3) can be
ignored since the velocity gradient at depths zu and zl is relatively small. Integrating
(7.4) from time t0 to t , the expression for momentum thickness as a function of time
takes the form

δθ,u(t) = δθ,u(t0) + 2

∫ t

t0

∫ zu

z0

[
P +

1

Re0

(
d〈u〉
dz

)2
]

dz dt −
∫ t

t0

〈u′w′〉(z = zu) dt,

(7.5)

δθ,l(t) = δθ,u(t0) + 2

∫ t

t0

∫ z0

zl

[
P +

1

Re0

(
d〈u〉
dz

)2
]

dz dt −
∫ t

t0

〈u′w′〉(z = zl) dt.

The growth of momentum thickness is the result of a positive contribution from
the turbulence production in the shear layer and a negative contribution from the
momentum flux 〈u′w′〉 at the edges of the shear layer. The viscous contribution can
be neglected at high Reynolds number. Since the stratification is weak in the top
region, we focus our discussion on the bottom region where the fluid is strongly
stratified. Figure 19(a) shows the time evolution of the momentum flux 〈u′w′〉 at
depth zl = −5 for the three cases. The flux is the strongest in case Jd = 0.25, and
the weakest in case Jd =0.10. Although, less momentum is transported away in case
Jd = 1.0 relative to case Jd = 0.25, δθ is smaller in the former. This is a result of the
reduction in turbulence production owing to buoyancy. It is of interest to compare
the radiated momentum flux in the shear layer with other configurations. The peak
value of 〈u′w′〉 � 2 × 10−3 in figure 19(a) for the internal wave momentum flux is
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Figure 19. (a) Reynolds stress 〈u′w′〉 at depth zl = −5. (b) Variation in the mean velocity
profile, �tu, in case Jd = 0.25.

larger than the corresponding value of 〈u′w′〉 � 10−4 observed in a jet by Smyth &
Moum (2002).

In order to estimate the efficiency of momentum transport by internal waves, we
compare the time-integrated Reynolds shear stress in (7.6) to the initial momentum in
the shear layer, which is 1 (�U ∗δ∗

ω,0, dimensionally). The time integration from t = 0
to 250 indicates approximately 10 % (Jd = 0.25), 7 % (Jd = 1.0) and 3 % (Jd =0.10)
of the initial momentum can be extracted by the internal waves. In their study
of a shear layer formed by flow over a vertical barrier, Sutherland & Linden
(1998) report slightly higher values from their two-dimensional simulations. This
is typical since velocity fluctuations are more correlated in two-dimensional flows.
In their laboratory experiments, 7 % is the maximum value that is observed for the
momentum propagated away by the internal waves. As the internal waves propagate
downward with significant amount of momentum, the mean flow decelerates as
noted by Fritts (1982). Figure 19(b) shows the variation in the mean velocity profile,
�tu(z, t) = 〈u〉(z, t) − 〈u〉(z, t = 0). The deceleration magnitude can be 1 % near the
shear layer and reduces to a smaller value as the waves travel away owing to local
viscous diffusion.

8. Energy transport
The amount of fluctuation energy transported away from the shear layer by

internal waves is quantified and found to be substantial. The shearing event generates
fluctuation kinetic energy and waves carry the energy into the deep layer. Therefore,
velocity fluctuations measured by the turbulent kinetic energy tke denoted by
K =1/2〈u′

iu
′
i〉, accumulate outside the shear layer. (Although we use the terms

turbulent kinetic energy and fluctuation kinetic energy interchangeably, non-zero
K well outside the shear layer is wave energy and not turbulence.) The amount of
energy transported is obtained by subtracting the amount of energy inside the shear
zone from the total amount present in the simulated domain. Integration of K from
z = −δω to δω provides a good measure of the tke inside the shear zone. Figure 20(a, b)
shows the spatially integrated K as a function of time for cases Jd = 0.25 and 1.0,
respectively. The dashed line indicates the energy inside the shear layer and the
solid line shows the energy in the test domain that excludes the sponge regions. The
difference between the two curves yields the amount of energy transported outside
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Figure 20. Integrated turbulent kinetic energy (a) Jd =0.25, (b) Jd = 1.0; —, over test
domain; − − −, over the shear layer.

the layer by the internal waves. Transport to the exterior starts at t =50, shortly
after the KH rollers begin to develop. Fluctuation energy associated with instabilities
and turbulence progressively builds up inside the shear layer and, correspondingly,
more energy is pumped into the deep region below the shear layer. At late time, the
energy inside the shear layer vanishes owing to the dissipative nature of turbulence,
but energy remains present outside where the viscous dissipation is relatively weak.
Outside the shear layer, the energy resides mainly in the bottom region where the
ambient stratification supports internal waves. From figure 20(a), approximately 0.02
�U 2 has been transported (the difference between the two lines at late time). Relative
to the initial mean kinetic energy inside the shear layer, the transported energy is
roughly 15 % in case Jd =0.25, 7 % in case Jd = 1.0 and 3 % in case Jd = 0.10. The
initial mean kinetic energy is calculated by integrating 1/2〈u〉2 at time t = 0 from
z = −δω,0 to δω,0.

It is desirable to describe the ‘efficiency’ of energy transport in light of the tke

budget. The evolution equation for the turbulent kinetic energy is

dK

dt
= P − ε + B − ∂Ti

∂xi

. (8.1)

Here, K is the turbulent kinetic energy defined previously, P is the production rate,
defined as

P ≡ −〈u′
iu

′
j 〉∂〈ui〉

∂xj

= −〈u′w′〉d〈u〉
dz

,

ε is the dissipation rate, defined as

ε ≡ 2

Re0

〈s ′
ij s

′
ij 〉; s ′

ij =
1

2

(
∂u′

i

∂xj

+
∂u′

j

∂xi

)
,

B is the buoyancy flux, defined as

B ≡ −Rib,0〈ρ ′w′〉,

∂Ti/∂xi is the transport of tke, defined by

Ti ≡ 1

2
〈u′

iu
′
ju

′
j 〉 + 〈u′

ip
′〉 − 2

Re0

〈u′
j s

′
ij 〉.
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Figure 21. Vertical profiles of tke budget in case Jd = 0.25 at (a) t = 83, (b) t = 160.

For the present flow, the transport term simplifies to ∂T3/∂z with

T3 =
1

2
[〈w′u′u′〉 + 〈w′v′v′〉 + 〈w′w′w′〉] + 〈p′w′〉 − 2

Re0

[〈u′s ′
31〉 + 〈v′s ′

32〉 + 〈w′s ′
33〉].

Figure 21(a, b) shows the profile of each term in the tke budget in case Jd = 0.25
at time t =83 and 160, respectively. At t = 83, the production and dissipation are
large but restricted to the shear region. The presence of propagating internal waves
external to the shear layer is shown by the extension of profiles of the buoyancy flux,
transport (essentially d〈p′w′〉/dz) and dK/dt into the deep region. At time t = 160,
the production is negligible and, in the shear region, the dissipation rate is balanced
by dK/dt . The internal gravity waves continue to transport energy into the deep
region. The profiles at t = 160 show that, in the deep region, approximately half of the
transport goes into changing the fluctuation kinetic energy and half into the buoyancy
flux, i.e. changing the fluctuation potential energy.

We now characterize the energetics of the fluctuations during the entire evolution
rather than at the two specific times of figure 21. Integrating (8.1) from depth z to
the top boundary zt

max of the test region yields∫ zt
max

z

dK

dt
dz =

∫ zt
max

z

P dz −
∫ zt

max

z

ε dz +

∫ zt
max

z

B dz + 〈p′w′〉(z). (8.2)

Figure 22(a) shows the time evolution of terms in (8.2) for case Jd =0.25. The spatial
integration includes the upper region excluding the sponge region, the shear layer and
the bottom region down to depth z = −5. As the vortices roll up, there is significant
energy extraction from mean shear by fluctuations through the turbulent production,
some of which is used to increase turbulent kinetic energy. Also in the presence of
the rollers, the buoyancy flux reaches its maximum value since larger eddies have
the capability to lift up heavy fluid. The peak dissipation rate occurs at later time
when the flow turns turbulent. The term 〈p′w′〉, called the pressure transport term
in the turbulence literature and the internal wave flux in the literature on waves,
is significant and occurs at a time between the occurrence of peak production and
peak dissipation. When z is far away from the shear layer, the internal wave (IW)
flux 〈p′w′〉 dominates the other transport terms. Figure 22(b) shows the energy flux
〈p′w′〉 at z = −5 for the three simulated cases. Similar to the momentum flux, the IW
flux depends strongly on the stratification in the deep region. For weak stratification
(Jd =0.1) the wave excitation is negligible and so is the IW flux. Case Jd = 0.25 has
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compared among different cases.

Jd IW/P IW/ε IW/(−B) ε/P (−B)/P Γ Γd

0.1 0.05 0.08 0.18 0.6 0.28 0.46 0.46
0.25 0.17 0.33 0.75 0.53 0.23 0.44 0.44
1.0 0.14 0.25 0.57 0.55 0.24 0.44 0.43

Table 1. Energy flux efficiency, energy partition and mixing efficiency. The terms in the tke
budget are integrated in both time and space (from z = −5 to zt

max) to calculate the tabulated
values.

the strongest IW flux, not Jd = 1.0. The dependence of internal wave flux on Jd is
non-monotone because increasing the stratification, on one hand, increases the flux
for a given amplitude of vertical velocity fluctuation but, on the other hand, decreases
the vertical velocity fluctuations in the generation region. In the shear layers simulated
here, the net IW flux due to the rollers is significantly higher than the flux due to
small-scale turbulence.

An overall quantification of the efficiency of IW flux is obtained by integration of
(8.2) from time t = 0 to late time tf when turbulent kinetic energy inside the shear
layer vanishes. This procedure is convenient since the temporal peak values of the
various terms in the tke balance occur at different times. Table 1 shows the efficiency
of energy transport by waves relative to other terms in the energy budget. Strang
& Fernando (2001) estimate the ratio of IW flux to the rate of change of potential
energy as approximately 48 %, slightly smaller than the values of 75 % and 57 % for
IW/(−B) in table 1. The production P measures the extraction of tke from the mean
shear flow by the Reynolds shear stress of the fluctuations. It is useful to quantify
the partition of the extracted energy into the various sinks of the tke balance as
done in columns 2, 5 and 6 of table 1. In case Jd = 0.25, 53 % of the production
is dissipated, 23 % used for stirring the density field and 17 % is transported away
by internal waves. In the same order, the values are 55 %, 24 % and 14 % for case
Jd = 1.0 and 60 %, 28 % and 5 % for case Jd = 0.1. As the numbers show, internal
waves can considerably alter the energetics inside the shear layer.
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The quantity Γ = −B/ε the so-called mixing efficiency is an important quantity
that is often used by oceanographers to infer the eddy diffusivity of mass Kρ

from the dissipation rate obtained by microstructure measurements or estimated
by measurement of the Thorpe scale. If Γ is known, the expression Kρ =Γ ε/N2

can be used without further approximation to obtain the eddy diffusivity (Osborn
1980). The quantity Γd = ερ/ε can be measured directly in the ocean from temperature
gradient and velocity shear data, and is used as a surrogate for the mixing efficiency
(Oakey 1985). Here, ερ is defined by

ερ =
1

PrRe0

g

ρ0|dρ̄/dz|
∂ρ ′

∂xk

∂ρ ′

∂xk

. (8.3)

The quantity ερ signifies irreversible loss of turbulent potential energy to the
background density field. The last two columns of table 1 give the overall mixing
efficiency where the buoyancy, viscous and scalar dissipation are integrated in time
before the ratios are taken. Although Γ =Γd = 0.2 is often employed, the value can
depend on the type of flow, the age of the flow in non-stationary examples, as well as
other parameters such as Reynolds number, Richardson number and Prandtl number.
Here, both Γ and Γd are approximately 0.44 for all Jd cases, somewhat smaller than
the value of 0.6 reported by Smyth et al. (2001) where they simulate a two-layer case
at Re= 1965 and Rib = 0.08.

9. Conclusions

The direct numerical simulations conducted here show that the presence of an
ambient region with uniform stratification substantially changes the evolution of
a stratified shear layer from the typically studied situation of shear between two
layers, each with constant density that differ. Three cases with different strength
of stratification in the deep region (Jd = 0.10, 0.25 and 1.0) and with uniform
stratification (Js = 0.05) in the shear zone are compared with a two-layer case. All
four cases have the same overall bulk Richardson number Rib = 0.10.

The thickness of the shear zone measured with the vorticity thickness δω increases
with increasing time. The thickness δω is the smallest in the case with the strongest
stratification, Jd =1.0. Unlike the two-layer case where the thickness asymptotes at
late time, δω has a secondary growth stage at late time with a moderate but noticeable
growth rate. This secondary growth leads to a vigorous growth in bulk Richardson
number Rib because the shear layer entrains heavier fluid at the bottom edge. At
the end of the Jd =1.0 simulation, Rib � 4, an order of magnitude larger than the
asymptotic value of Rib = 0.32 ± 0.06 observed in the two-layer problem. Another
measure of shear layer thickness is the momentum thickness δθ . The Jd cases have
significantly smaller δθ with respect to the two-layer situation. Furthermore, the
secondary growth of δθ in the Jd cases is much smaller than that of δω. The shear
layer stirs and mixes up the density field and, consequently, pycnoclines (regions
with a strong change in density gradient) are formed at the edges of the layer. At
the bottom edge, the pycnocline grows and then merges into the strong background
stratification. The pycnocline at the top edge grows and then depletes in time. The
deep stratification leads to an important qualitative difference in the profile of mean
shear with respect to the two-layer case. The position of maximum shear shifts from
its initial position at the centre of the shear layer downward towards the centre of
the thermocline in contrast to the two-layer case where the maximum shear remains
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at the centre. Lower momentum fluid that is transported to the pycnocline by stirring
is unable to exchange its momentum with the higher momentum fluid because of the
large stable stratification in the pycnocline and, as a result, the shear is enhanced.
Even with the enhanced shear, the gradient Richardson number is much larger than
the critical value of 0.25 in the pycnocline and, consequently, shear instabilities are
prohibited. In the presence of a deep stratification the coherent structures break down
shortly after their formation because the nonlinear pairing process, observed in the
two-layer case, is inhibited.

The shear layer excites strong internal waves in the cases with Jd = 0.25 and 1.0.
Waves are excited during both the early-time stage of KH instability and the late-
time stage of three-dimensional turbulence. The early-time generation of internal
waves is especially strong and their characteristics can be explained by linear theory:
the horizontal wavenumber is given by the most unstable wavelength, i.e. the KH
mode, the temporal frequency is that due to the bottom free stream moving over
the approximately stationary KH rollers and the linear dispersion relationship for
internal gravity waves predicts the observed angle of the phase lines (equivalently
group velocity). In particular, the phase lines are observed to tilt at approximately
θ =32◦–38◦ (Jd =0.25) and 62◦–68◦ (Jd = 1.0) to the vertical. The power spectrum
of the early-time internal waves as function of temporal frequency and wavenumber
is also found to be consistent with linear theory. Jd > 0.18 is the condition for
the KH instability to excite propagating internal waves. Consequently, KH-generated
internal waves are not observed when Jd = 0.10. However, the late-time turbulent stage
does permit internal waves that are observed to span a wide range of wavenumbers,
frequencies and phase angles in the generation region. The linear theory that was found
to work well at early time does not explain the characteristics of the late-time waves.
In agreement with previous laboratory and numerical studies of turbulence-generated
waves, the phase lines in the deep propagation region cluster in a narrowband,
approximately around 45◦.

Internal waves, observed here to propagate in the bottom interior region, do not
transport mass away or into the shear layer, consistent with linear wave theory, but
are shown to constitute a significant pathway for energy transfer into the interior. The
net mass gain, observed here, is the result of the molecular diffusive flux associated
with the density gradient external to the shear layer. Nonetheless, internal waves
extract momentum from the shear layer. Therefore, the evolution of the momentum
thickness δθ shows asymmetry: the thickness grows less in the bottom portion where
strong internal waves are generated. The extraction is most efficient in the case with
Jd = 0.25. Measures of Reynolds stress in the deep region show that internal wave can
carry up to 10 % of the initial momentum inside the shear layer. The significant drag
causes the bottom part of the shear layer to decelerate. Along with momentum, waves
also transport energy to the ambient. The internal wave energy flux is examined by
comparing the terms in the vertically integrated turbulent kinetic energy equation.
Case Jd = 0.25 shows the strongest energy flux and not Jd = 1.0 implying that there is
a buoyancy frequency which is optimal with respect to wave energy flux. Integration
of the kinetic energy budget over the simulated time shows that the internal waves are
important to the energetics of the shear layer. The contribution of the wave energy
flux can be up to 17 % of the production, 33 % of the dissipation and 75 % of the
buoyancy flux. Therefore, internal waves provide an important route for transport
of fluctuation energy from shear flow instabilities into the stratified interior with
potentially important implications for energy pathways in the ocean and in the
atmosphere.
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