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Large-eddy simulation of combustion problems involves highly nonlinear terms that, when filtered,
result in a contribution from subgrid fluctuations of scalars,Z, to the dynamics of the filtered value.
This subgrid contribution requires modeling. Reconstruction models try to recover as much
information as possible from the resolved fieldZ̄, based on a deconvolution procedure to obtain an
intermediate fieldZM . The approximate reconstruction using moments~ARM! method combines
approximate reconstruction, a purely mathematical procedure, with additional physics-based
information required to match specific scalar moments, in the simplest case, the Reynolds-averaged
value of the subgrid variance. Here, results from the analysis of the ARM model in the case of a
spatially evolving turbulent plane jet are presented.A priori anda posteriorievaluations using data
from direct numerical simulation are carried out. The nonlinearities considered are representative of
reacting flows: power functions, the dependence of the density on the mixture fraction~relevant for
conserved scalar approaches! and the Arrhenius nonlinearity~very localized in Z space!.
Comparisons are made against the more popular beta probability density function~PDF! approach
in thea priori analysis, trying to define ranges of validity for each approach. The results show that
the ARM model is able to capture the subgrid part of the variance accurately over a wide range of
filter sizes and performs well for the different nonlinearities, giving uniformly better predictions
than the beta PDF for the polynomial case. In the case of the density and Arrhenius nonlinearities,
the relative performance of the ARM and traditional PDF approaches depends on the size of the
subgrid variance with respect to a characteristic scale of each function. Furthermore, the sources of
error associated with the ARM method are considered and analytical bounds on that error are
obtained. ©2003 American Institute of Physics.@DOI: 10.1063/1.1608008#

I. INTRODUCTION

Turbulent combustion involves a wide range of spatio-
temporal scales and requires a large number of dependent
variables~e.g., species mass fractions!, two facts that make
direct numerical simulation~DNS! of realistic cases impos-
sible with current computational resources. Models are re-
quired and considerable effort has been devoted to the
subject.1–5

Classical moment-based methods pose many difficulties
due to the strong nonlinear character of the reaction terms.
Besides, the turbulent transport terms are not well repre-
sented by the gradient transport models used with passive
scalars.4 A different general approach consists of writing the
problem in terms of the one-point probability density func-
tion ~PDF!6,7 and trying to solve the corresponding transport
equation. The reaction terms are now closed, but closure is
required for the pressure and molecular mixing terms. Active
research is being done in this framework, working with re-
duced mechanisms and modeling the transport equation for
the joint PDF of the corresponding scalars.8

A popular formulation in nonpremixed turbulent com-
bustion tries to take advantage of the conserved scalars that
might appear in the problem. If it is possible to derive state
relations of the formc i5c i(Z), where c i represents the
reactive scalars andZ a conserved scalar, then the knowledge
of information aboutZ provides information aboutc i .2,4,9,10

The relationsc i(Z) are derived using the fact that chemical
times, tc , are very often small compared to flow times,t f ,
and hence the Damko¨hler number, Da5t f /tc , is large. Two
final simplifying assumptions can then be made: either to
consider reversible infinitely fast chemistry, having the equi-
librium composition at each point in space and instant of
time, or to consider irreversible infinitely fast chemistry with
an overall single-step chemical reaction model, the so-called
Burke–Schumann solution, which leads to a flame sheet rep-
resentation.

The flame sheet approach suggested the view of nonpre-
mixed turbulent reacting flows as an ensemble of laminar
thin one-dimensional diffusive-reactive layers, called
flamelets, embedded in an otherwise nonreactive turbulent
flow.11 This concept leads to equations forc i in terms of the
mixture fractionZ, with the scalar dissipation ratex as a
parameter.4,12–14 Solution of this set of equations givesc i
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5ci(Z;xst), and if the joint PDF ofZ and xst is assumed,
statistical information about species mass fractions and tem-
perature is known.

Recently, the conditional moment closure approach has
been proposed as an alternative to flamelet models.15,16 In-
stead of taking the usual~unconditional! average of the sca-
lars, the expectation is taken conditional to the mixture frac-
tion being a defined value, and transport equations are
derived for these conditional moments, equations that require
again closure for certain terms. Similarities and differences
with the flamelet model are currently a topic of research.4,17

During the past decade, large-eddy simulation~LES! has
increasingly been used for modeling nonpremixed turbulent
combustion, given its relative success in nonreacting turbu-
lent flows. The present work falls into this category. In LES,
the problem is formulated in terms of the filtered variables,
and filtering the governing equations brings into the problem
subgrid-scale~SGS! contributions to the dynamics of the re-
solved fields from the subgrid~subfilter, unresolved! scales;
these contributions are unknown and have to be modeled.
Each nonlinear term causes a subfilter counterpart, and these
nonlinear terms appear either in the direct approach~e.g.,
through the chemical production terms in the species conser-
vation equations! or in the conserved scalar approach@e.g.,
the state relationsc i(Z)]. The resolved field,Z̄(x,t), is
given by the LES and therefore the resolved part of the non-
linear term, f (Z̄), is known. The question is what is the
subgrid contribution

f ~Z!sg~x,t !5 f ~Z!2 f ~ Z̄!, ~1!

to the total termf (Z). The filtering operation of a variablef
is denoted byf̄. Z will be thought of as a conserved scalar,
like a mixture fraction, ranging from 0 to 1, but nothing
prevents the results to be applied to a nonconserved quantity,
like a species mass fraction.

One possible approach to model scalar mixing in LES is
the linear-eddy model.18 Applications to combustion prob-
lems have been reported in the literature19,20Another type of
approach is based on PDFs. In this method, the filtering op-
eration is written in terms of the filtered~subgrid-scale,
large-eddy! PDF, which describes the stochastic behavior of
the scalar,Z, inside the grid cell. One solution is to model the
transport equation for this PDF.21,22However, the most popu-
lar procedure is to presume certain distribution, generally a
beta PDF.23,24 This latter procedure requires two inputs: the
filtered field Z̄, available directly from a LES, and the sub-
grid variance,

Zsg
2 ~x,t !5Z22Z̄2, ~2!

not available directly and, therefore, in need of modeling@for
notational convenience, the subgrid-scale variance will be
generally denoted byZsg

2 , instead of the more correct nota-
tion, (Z2)sg; this latter representation will be used when con-
fusion with (Zsg)

2 might arise#. The scale similarity
approach24 with the coefficient calculated using an assumed
scalar spectrum,25 and the gradient model26 are two possibili-
ties to estimate the subfilter variance.A priori tests of the
beta PDF model have been performed in previous studies

using direct numerical simulation~DNS! data, for example,
isotropic turbulence with equilibrium chemistry and no heat
release,24 isotropic turbulence with a flamelet model and no
heat release27 and isotropic turbulence with a flamelet model
and heat release.28 Furthera priori analysis has been carried
out for a shear layer with infinitely fast chemistry and no
heat release,29 and a round jet with finite-rate chemistry and
heat release.30 An overall conclusion of thea priori studies is
that the beta-PDF model gives good predictions if theexact
pointwise subfilter scalar variance is available. Somea
posteriori studies have been performed, for example, a tur-
bulent round jet of nonpremixed methane–air with a pilot.31

Approximate reconstruction using moments~ARM!
model32 is an alternative approach that avoids the intermedi-
ate step of modeling the PDF of the subgrid-scale fluctua-
tion. Similar to other reconstruction models, it recovers in-
formation from the filtered field,Z̄(x,t). However, in
addition, theaveragevalue of the subfilter scalar variance,
obtained for example from the ‘‘small scale’’ behavior of the
scalar spectrum, is provided. In its simplest version, it is
based on the filter size,D f , and physical quantities, namely,
expected values of the turbulent kinetic energy,K, the scalar
variance,Zrms

2 , and the scalar dissipation,x5^2D¹Z•¹Z&,
which can be reasonably estimated from a LES~thoughx is
often used for the instantaneous value in combustion litera-
ture, here it is chosen to represent the expected value for
notational convenience!. As a special case, the ARM model
can be used to estimate the subgrid variance required in the
PDF approach.

In the present work, reconstruction models are discussed
for a single-scalar nonlinear function, with particular empha-
sis on the ARM model. After describing different aspects of
these approaches,a priori and a posteriori analysis of the
ARM model in a spatially evolving turbulent plane jet are
presented. The sources of error in the ARM procedure are
then analyzed. The discussion is concluded presenting com-
parisons with the assumed PDF approach.

II. RECONSTRUCTION SUBGRID-SCALE MODELS

Let Z(x,t) be a scalar field defined overV, the volume
occupied by the flow variables, at a certain timet. The fil-
tering operation is a linear transformation between two func-
tion spaces, sayG:L2(V)→L2(V), defined by

Z̄~x,t !5GZ~x,t !5E
V

G~x,r !Z~r ,t !dr . ~3!

Time, t, enters only as a parameter and will not be shown
explicitly in the following discussion. If the filter is homo-
geneous, i.e.,G(x,r )5G(x2r ), then the filtering operation
is reduced to a convolution in physical space between the
field Z(x) and the filter kernelG(x).33

Reconstruction subgrid-scale modelstry to recover as
much information as possible fromZ̄(x) at each instant of
time. If the operatorG admits an inverse, then the complete
original field Z(x) can be recovered. However, the filters
used in LES are not invertible, and, at most, only part of the
original field is recovered. This reconstruction provides an
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intermediatescalarZM(x), which is used to compute either
the subgrid-scale part or the total part of the nonlinearity
f (Z) according to Eq.~1!.

The first reconstruction approach was thescale similar-
ity model~SSM!,34 which improved considerably the corre-
lation between model and exact subgrid-scale fields com-
pared to the typical gradient-based approach. Thesubgrid-
scale estimation model35,36 involves a deconvolution step on
the LES field (D f resolution! followed by the introduction of
a finer mesh (D f /2 resolution! to allow the representation of
the nonlinear contribution,u•¹u, from scales betweenD f

and D f /2. More recently, theapproximate deconvolution
model~ADM !37,38 has been introduced to estimate the unfil-
tered field by a truncated series expansion of the ‘‘inverse
filter operator.’’ Finally, theapproximate reconstruction us-
ing moments~ARM! model32 modifies this last approach to
bring certain physical information into the pure mathematical
procedure of deconvolution.

A. Deconvolution operation

A sufficient ~not necessary! condition for a linear opera-
tor G to have a bounded inverseG21 is iI2Gi,1, in which
caseG21 can be represented by theNeumann series

Q5 (
n50

`

~I2G!n. ~4!

Linear operator theory provides more general conditions for
the existence of the inverse operator,39,40 but this result is
sufficient for the following discussion. The problem is that
G21 exists if and only if the null space ofG, N(G), contains
only the zero function, and that is not the case in LES. Using
Fourier analysis and denoting the Fourier transform of any
variablef by f̂,

f̂~k!5
1

~2p!3 ER3
f~x!e2 ik•x dx, ~5!

the null space ofG is given byĜẐ50, which corresponds to
the zeros of the filter transfer functionĜ(k) for ẐÞ0. From
a theoretical standpoint, aGaussian filtercan be inverted
because its filter transfer function does not have any zero.
Similarly, the null space of thetop-hat filter is a set of zero
measure, with the only effect of eliminating particular fre-
quencies but without repercussion on the final energy of the
field. For asharp spectral cutoff filter, information beyond
the cutoff frequency is unrecoverable. The representation of
Z(x) on a discrete grid in physical space implicitly imposes
a spectral cutoff, and therefore, in the discrete case, nothing
can be recovered from wavelengths smaller than 2Dg , where
Dg denotes the grid spacing. Thus, in LES applications,G21

does not formally exist.
This fact suggests to decompose the fieldZ(x) as

Z5Z̄1Zsg5Z̄1Zsg,r1Zsg,u , ~6!

where the subgrid term has been split into arecoverable part,
Zsg,r , and anunrecoverable part, Zsg,u . The former one is
defined by

Z2Zsg,u5Z̄1Zsg,r5QZ̄ ~7!

and the latter needs modeling. Figure 1 shows an example of
the spectra~power spectral densities! of Z and Z̄ using a
top-hat filter. The difference between these two spectra rep-
resents the energy in the subgrid scales. To the left of the
vertical line, which denotes the position of the filter in wave
number space, the scales are recoverable by the LES grid and
to the right they are not. Hence, the deconvolution operation
is useful for cases in which the filter is not a sharp spectral
cutoff because it allows us to recover information of scales
close to the filter sizeD f .

The justification for the effort in recovering the subgrid
scalesZsg,r lies in how much of the whole subgrid field is
represented by them. To clarify this point we proceed to es-
timate the expected value of the subfilter variance. The ex-
pected value~Reynolds-averaged value! of any variablef is
denoted by^f&. In an isotropic case, we can use Fourier
analysis and work in wave number space to obtain41

^Z22Z̄2&5^Z22Z̄2&5E
0

`

~12Ĝ2!EZ dk, ~8!

where EZ(k) is the three-dimensional scalar spectrum and
Ĝ(k) is the filter transfer function@multiplied by (2p)3].
Note that interchanging the Reynolds average and the filter
~both are linear operations! gives^Z2&5^Z2& and, assuming
homogeneity,̂ Z2& is constant, yieldinĝZ2&5^Z2&. All the
discussion will be presented for a top-hat filter, for which

Ĝ~k!5sinj/j, ~9!

wherej5gkLZ andg is defined by

g5D f /2LZ . ~10!

Other filters in physical space were considered and the cor-
responding results are shown in Appendix A, where it is
observed that there are little differences among them. In
these expressionsD f is the filter size andLZ5K1/2Zrms

2 /x is a
large scale of the scalar fluctuations. The turbulent kinetic
energy is denoted byK andx represents the expected value
of the scalar dissipation. If we assume that the nonzero re-

FIG. 1. One-dimensional spectrum ofZ ~upper solid curve! and Z̄ ~lower
solid curve! obtained from DNS. Dashed line indicatesĜ2 of the top-hat
filter plus the spectral cutoff~vertical solid line! introduced by the LES grid,
Dg5D f /2.
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gion of (12Ĝ2) in Eq. ~8! occurs for wave numbers well
into the inertial range we can then adopt the Obukhov–
Corrsin spectrum,42

EZ~k!5Cce
21/3xk25/3, ~11!

e being the turbulent kinetic energy dissipation, which yields

^Zsg
2 &/~Zrms

2 Ccg
2/3!5E

0

`

~12~sinj/j!2!j25/3dj

51.4352. ~12!

Equation~12! is important because it relates the filter size
D f , embedded ing, with the level of subfilter fluctuations.
On the other hand, the filter size corresponds toj5p and
therefore the amount of subgrid-scale energy recoverable by
reconstruction is the above integral over the interval
jP@0,p#, which yields 0.7433. These figures indicate that, if
the assumptions made hitherto hold, the percentage of
subgrid-scale energy reconstructible in the case of a top-hat
filter is about 50%,independentof the filter size, as long as
the subgrid scales are well inside the inertial subrange. This
simplified analysis helps to explain why deconvolution pro-
cedures have proved to yield good results.37,38

A second consideration is that, for practical applications,
the series definingQ has to be truncated at a certain order,
having finally an operatorQM that provides the intermediate
field ZM(x),

ZM5QMZ̄. ~13!

Writing it explicitly,

ZM5Z̄1~ Z̄2Z% !1~ Z̄22Z% 1 Z̄̄
¯

!1¯ . ~14!

The rate of convergence of the series, Eq.~14!, is of similar
importance to convergence itself, since each term in the ex-
pansion involves an additional filtering operation and the de-
convolution procedure can become computationally too ex-
pensive. It turns out that the series in Eq.~14! converges
slowly for turbulent scalar fieldsZ(x). A priori analysis of
the deconvolution procedure using DNS of a temporal mix-
ing layer32 showed that five terms in the expansion were
required to recover peaks of the expected value^Zsg

2 &, the
subgrid contribution tô Z2&, to about 90%~depending on
the filter size!. A way to avoid this shortcoming is to redefine
a new inversion kernel, shorter than the series in Eq.~14!,
such that certain information about the original field is
recovered.37

Thus, the deconvolution procedure has two drawbacks.
First, information about wavelengths smaller than the LES
grid cutoff is unrecoverable. Second, the series in Eq.~14!
exhibits slow convergence to the recoverable part of the
field. The deconvolution approach is only a mathematical
technique, and it does not account for the missing subfilter
part of the spectrum. The fact that the fieldZ(x), at a certain
time t, is a solution of the Navier–Stokes equations has not
been used. The ARM model32 is a modification of the recon-
struction that involves certain physics of these small scales.

This allows us to decrease the cost of an approximate recon-
struction and, more importantly, to include a compensation
for the unresolved subgrid scales.

B. Deconvolution and the scale-similarity model

It is interesting to compare the idea of reconstruction
with the traditional scale-similarity model. Decomposing the
scalar field into a filtered value and a small-scale fluctuation
by Z5Z̄1Zsg, the subgrid variance becomes

~15!

where the different termsL0, C0, andR0 are thegeneralized
Leonard part, cross part, andReynolds part, respectively. We
use the symbol (Z2)sg for the subgrid-scale varianceZsg

2 for
clarity in notation, not to be confused with (Zsg)

2. In order to
determine the relative importance among these components,
the Obukhov–Corrsin spectrum is used to estimate their ex-
pected value,

^L0&/~Zrms
2 Ccg

2/3!5E
0

`

~12Ĝ2!Ĝ2j25/3dj50.3596,

^C0&/~Zrms
2 Ccg

2/3!5E
0

`

2~12Ĝ2!Ĝ~12Ĝ!j25/3dj

50.1470, ~16!

^R0&/~Zrms
2 Ccg

2/3!5E
0

`

~12Ĝ2!~12Ĝ!2j25/3dj

50.9286,

where, as before,g5D f /2LZ . The integrands of these ex-
pressions, which show the contribution of each wave number
to the average of the three subgrid-scale terms, are plotted in
Fig. 2. The value of the integrals given in Eq.~16! show that
25% of the subgrid energy resides in the Leonard part, 10%
in the cross part and 65% in the Reynolds part~note that the
abscissas axis is in logarithmic scale!. That same graph
shows that the energy in the Leonard part and a large amount
of the cross part can be reconstructed, along with a small

FIG. 2. Contribution to the total subgrid-scale variance~solid line! by the
different terms: –––, Leonard part; –-–, cross part; and¯, Reynolds part.
The vertical solid line indicates filter position,j5p.
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quantity of the Reynolds term, so that 50% of the subgrid-
scale energy is recoverable. Nevertheless, it has to be noted
that these percentages only concern theenergycontent, and
they say very little about the actual instantaneous represen-
tation of the subfilter variance field.

The scale similarity model approximates the subgrid-
scale variance by

Zsg
2 'Z̄22Z2, ~17!

that is, only with the Leonard term, which is equivalent to
approximate reconstruction with

ZM5Z̄. ~18!

Hence, the scale similarity model can be interpreted as the
leading order term in the deconvolution expansion given by
Eq. ~14!. This only represents about one-fourth of the total
subgrid energy according to the previous estimates, and
modifications of Eq.~17! have been used to compensate this
deficit so that the scale similarity model is given by

Zsg
2 5c~ Z̄2̃2 Z̃̄2!, ~19!

where the second filter denoted by the tilde is often taken to
be larger than the first one andc is a coefficient to be deter-
mined. From this point of view, reconstruction can be
thought of as a generalized scale similarity model, where
higher order terms of the deconvolution expansion have been
retained. Thus, it is logical to expect better correlation be-
tween exact and model-predicted values of the subgrid-scale
variance in the reconstruction procedure with respect to the
scale similarity one, as it is confirmed later in thea priori
analysis.

C. Approximate reconstruction using moments

From the previous discussions, it is clear that the original
field cannot be recovered because of the spectral cutoff im-
posed by the LES grid atk5p/Dg , whereDg is at most
D f /2 in order to resolve all the scales down to the filter size.
This is the only effect of the numerical part of the LES
problem that is retained in this work. The issue of the cor-
ruption of the small scales in a simulation due to aliasing and
due to the truncation error of the particular numerical scheme
chosen should not be forgotten, but the present analysis con-
centrates only on the analytical part of the problem. The
analysis produces certain models and equations, and these
should then be solved as exactly as possible: using spectral
methods with dealiasing, utilizing high-order compact
schemes if inhomogeneous directions are present, and/or ul-
timately working with a resolution higher thanDg5D f /2.

Since the recovery of the original fieldZ(x) at each in-
stant of time is impossible, reconstruction methods, though
originally motivated by deconvolution, should be understood
as trying to find anintermediatefield ZM(x) with a different
range of scales~namely, only scales larger thanD f), such
that the fieldf (Z)(x), which is defined on that same range of
scales, is well approximated byf (ZM)(x) according to cer-

tain criteria. The difficulty is to state clearly those criteria
and obtain accordingly an expression forZM(x). This is the
intent of the ARM model.

1. Subfilter variance Z sg
2

The ARM model introduces the one-parameter family of
intermediate fieldsZM(x) given by

ZM5Z̄1c0~ Z̄2Z!, ~20!

wherec0 is the model coefficient. It is emphasized thatZM is
not an approximation to the original fieldZ, but an interme-
diate field chosen so as to obtain subgrid contributions to the
filtered valuef (Z). Depending on the closure condition im-
posed to obtain it, we will get different particular members
of the family. Physically, ARM relies on the smallest re-
solved scales,

Zsg5Z̄2Z, ~21!

the known small-scale component of the filtered scalar field
Z̄(x), of size comparable toD f , to describe the effect of the
whole range of subfilter scales. The model coefficient is the
amplitude of this field.

In the procedure of approximate reconstruction using
moments, the coefficient is calculated so as to match specific
subgrid moments of the scalar field,Zn2Z̄n. The first mo-
ment is zero, and the second one leads to the closure condi-
tion on the subgrid-scale variance,

^ZM
2 2Z̄M

2&5^Z22Z̄2&. ~22!

If it were just an approximate reconstruction, this equality of
subgrid-scale energy between the two different fieldsZ and
ZM should be up to the grid cutoff wavelength. ARM goes
further by including the energy of the whole subgrid-scale
Reynolds part in the intermediate fieldZM through the small-
est resolved scales.

Substituting Eq.~20! into Eq. ~22! gives the following
quadratic equation forc0 :

a2c0
21a1c01a050, ~23!

where

a05^Z̄22Z2&2^~Z2!sg&,

a152^Z̄ Zsg2Z Zsg
%&, ~24!

a25^Zsg
22Zsg

2&.

In Eq. ~24!, the only unknown iŝ (Z2)sg&. The physical
meaning of each coefficient can be seen by writing the gen-
eralized decomposition of the subfilter variance, Eq.~15!,
applied to the intermediate fieldZM ,

~ZM
2 !sg5Z̄22Z212c0~ Z̄ Zsg2ZZsg

%!1c0
2~Zsg

22Zsg
%2!.

~25!

ARM modifies the energy contained in the resolved cross
and Reynolds terms to account for the unresolved part. It is
observed as well that the conditionc0.0 should be imposed
to maintain the sign of the contribution from the cross term
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equal to that of the original fieldZ(x) ~pointwise correlation
results between exact and modeled subfilter variance fields
confirm this choice32!.

The input of the model is theexpectedvalue ^(Z2)sg&,
with which Eq. ~23! can be solved forc0 . Some additional
hypothesis have to be done to estimate the expected value of
the subfilter variance, and the model coefficient will deviate
from the exact one, that given with the exact^(Z2)sg& ~e.g.,
from DNS ina priori analysis!. Therefore, it is interesting to
know the sensitivity of the modeled subgrid-scale variance to
the model coefficient. This sensitivity is expressed math-
ematically by

G5
1

^~ZM
2 !sg&

]^~ZM
2 !sg&

]c0
, ~26!

such that the relative error in the prediction of the subgrid-
scale variance due to small errors in the model coefficient is
just GDc0 . From Eq.~20! we obtain

G5
2a2c01a1

^~ZM
2 !sg&

. ~27!

2. General nonlinearity f(Z)

The correct prediction of the subfilter variance is the first
part of the ARM model. The second proposition is to com-
pute the subgrid-scale part,f (Z)sg(x), of a general nonlin-
earity f (Z) by

f ~Z!sg5 f ~Z!2 f ~ Z̄!' f ~ZM !2 f ~ZM !. ~28!

The intermediate field is used in the subgrid-scale part of
f (Z), instead of the alternative38 of obtaining the total term.
This approach satisfies certain consistency properties, for ex-
ample, that the invariance of the exact subgrid variance un-
der translation is maintained by Eq.~28!, which yields better
pointwise behavior.32

Analysis of this model forf (Z)sg(x) is now presented.
ConsiderZ(r ) and f (Z)(r )5 f (Z(r )) defined inside the filter
cell V f(x) around a fixed nodex of the LES grid. The Taylor
expansion off (Z) around the fixed valueZ05Z̄(x), a con-
stant function in that cell, yields the following formula:

f ~Z!2 f ~ Z̄!5 f 8~ Z̄!~Z2Z̄!1 1
2 f 9~ Z̄!~Z2Z̄!21E2 , ~29!

where the remainder,E2(r ), is given by

E2~r !5 1
6 f-~ Z̄1u~Z2Z̄!!~Z2Z̄!3, ~30!

andu~r ! has a value between 0 and 1. We are assuming the
function f (Z) to be C2 for ZP@0,1# and f-(Z) to exist in
~0,1!. After filtering the above expression we obtain

f ~Z!2 f ~ Z̄!' 1
2 f 9~ Z̄!~Z22Z̄2!. ~31!

Equation~31! is an accurate approximation if thelocal sub-
filter fluctuation,

Zlsg~r !5Z~r !2Z̄~x!, ~32!

is small enough so thatE2 can be neglected. In this case, the
same formula can be applied tof (ZM),

f ~ZM !2 f ~ZM !' 1
2 f 9~ZM !~ZM

2 2ZM
2 !, ~33!

because of the matching in the subfilter variance used by the
ARM model to close the subgrid-scale problem, Eq.~22!.
Therefore,

ZM ,sg
2 'Zsg

2 ⇒ f ~ZM !sg' f ~Z!sg. ~34!

Equation~29! does not assume that filtered variables are
constant inside the filter cell,V f(x), but only that the expan-
sion is done about the constant valuef (Z̄).

Finally, an estimate of the error of the ARM model in
predicting f (Z)sg(x) is given by the filtered value of the
remainder in Eq.~29! by takingu50, which yields

E~x!5
f-~ZM !

3!
~ZM2ZM !3

5
f-~ZM !

3!
~~ZM

3 !sg23Z̄~ZM
2 !sg!. ~35!

In order to quantify the magnitude of the local subfilter
field, we use theL2 norm, ifi, defined with the filter kernel
G(x,r ) as weighting function by Eq.~A2!. The motivation
and consequences of this choice of norm are presented in
Appendix A, where the local analysis of the filter is de-
scribed, the main result being

iZlsgi5~Zsg
2 !1/2. ~36!

Hence, to estimate the accuracy of Eq.~28! as a model,
we have to look at the ratio of the remainderE2(r ) to the
second term in Eq.~29!,

iE2i
is2i '

iZlsgi
DZ

5
~Zsg

2 !1/2

DZ
, ~37!

where

DZ53
f 9~ Z̄!

f-~ Z̄!
~38!

can be viewed as a characteristic scale inZ space of the
particular nonlinearityf (Z). We define

l5
~Zsg

2 !1/2

DZ
~39!

and, if l is sufficiently small, then the error in the ARM
approach would be acceptable. Equation~39! can be under-
stood from a different standpoint: given a functionf (Z), the
value ofDZ is known from Eq.~38! and, since the value of
(Zsg

2 )1/2 required for a chosen ratiol is available from Eq.
~39!, Eq. ~12! can then be used to estimate the required filter
size to utilize in the simulation,g5D f /2LZ . This approach
gives the scaling of the error in the ARM model with the
filter size D f . From Eq.~12! we know that^Zsg

2 & varies as
g2/3. Therefore, sinceDZ does not depend on the filter size,
we obtain

l}g1/3. ~40!
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3. Model coefficient: Spectral variant

The simplest approach is to consider the situation where
the subfilter scales are in equilibrium and follow a given
spectrum. Working with the Fourier transforms of the scalar
field and its filtered values, the coefficientsai in Eq. ~23! are
given by integrals in the frequency space involving the scalar
spectrum and the filter transfer function, readily computable
once a particular spectrum is assumed.32 The scalar spectrum
provides physical information of the subgrid scales, whereas
the filter transfer function brings in mathematical informa-
tion of the filtering operation. The filter transfer function,
Ĝ(k) is known, but the scalar spectrumEZ(k) is not. In this
case, the scalar spectrum is the input to the ARM model.

The aim of LES is high Reynolds number turbulence,
where EZ(k) in the inertial–convective subrange42 is de-
scribed by the Obukhov–Corrsin spectrum, Eq.~11!. Several
authors43,44 have studied the behavior of the scalar spectrum
and general results for shear flows are that the 5/3-law
strictly appears only for Rel values beyond 1000, the
Obukhov–Corrsin constant tending asymptotically to the
value 0.67~for the three-dimensional spectrum!. We consider
in this paper only the case Sc&1. If Sc@1 a viscous–
convective subrange comes up with the Batchelor power law
proportional tok21; then, the correct new spectrumEZ(k) is
needed in the model formulation.

For high enough Reynolds number and if the filter size is
far enough from the large scales of orderLZ and the small
scales of orderhZ , it is the inertial–subrange scaling of
EZ(k) that matters. In this situation the flow-dependent large
scales are resolved and the shape of the spectrum in the
inertial–diffusive or viscous–diffusive subrange, which is
unknown with certainty, does not enter because the energy at
those scales is already very small. However, in typical tur-
bulent flows, there are regions of the flow with high Rey-
nolds number and other regions with low Reynolds number,
and it is desired that the model works smoothly in all parts.
Hence, we additionally adopt the shapes of the spectrum for
the energy-containing and the diffusive ranges as proposed
by Pope41 for the velocity spectrum

f L~u!5u215/3/~u21cL!~215/3!/2, u5kLZ ,
~41!

f h~z!5exp~2b~~z41ch
4 !1/42ch!!, z5khZ ,

so thatEZ(k) can be written as

EZ5Zrms
2 LZCcu

25/3f L~u! f h~z!, ~42!

where u/z5LZ /hZ5Pet
3/4, the scalehZ being defined as

hZ5(D3/e)1/4 for the inertial–diffusive subrange. The turbu-
lent Péclet number is defined as Pet5K1/2LZ /D.

The final expression for the model coefficient is32

c05c0~g,Pet!. ~43!

Thus, if the Reynolds number is not sufficiently large, the
model coefficient depends on how the filter length compares
with both the large and the small scales of the turbulent
motion, a fact that can be expected on physical grounds.
Another desirable property is that the scalar spectrum enters
just with its unresolved part, i.e.,EZ(k)(12Ĝ2(k)), and,
since Ĝ(k)'1 for the large scales, the low-wave-number

part of the spectrum does not affect the value ofc0 ; the
known nonuniversality of low-wave-number scales does not
present a problem. Figure 3 plots the behavior ofc0 , given
by Eq. ~43!, for the top-hat filter. We can see the asymptotic
behavior ofc0 as Pet is increased. This asymptotic value can
be computed similarly to the previous estimates of integrals
of the spectrum, obtaining

lim
Pet→`

a0 /~Zrms
2 Ccg

2/3!5E
0

`

~12Ĝ2!~Ĝ221!j25/3dj

521.0756,

lim
Pet→`

a1 /~Zrms
2 Ccg

2/3!5E
0

`

2~12Ĝ2!Ĝ2~12Ĝ!

3j25/3dj50.1383, ~44!

lim
Pet→`

a2 /~Zrms
2 Ccg

2/3!5E
0

`

~12Ĝ2!~12Ĝ!2Ĝ2j25/3dj

50.0305

and the value obtained for the model coefficient isc054.1,
as observed in that figure. Equation~44! shows that the
model coefficient for high Pe´clet numbers depends on the
filter and the slope of the spectrum in the inertial subrange.
These numbers can be used to calculate the sensitivity of the
ARM prediction of the subgrid-scale variance to the model
coefficient, given by Eq.~27!. The result isG50.27. It allows
us to define an interval forc0 in order to get a desired accu-
racy in the prediction of the subfilter variance; for instance, if
we want relative errors in the subgrid-scale variance of 10%
we need to predict the model coefficient in an interval 0.37
around the value 4.1. Thea posteriori results in Sec. IV
show that this accuracy is attainable.

In an actual LES, the model coefficientc0 can be pre-
computed and stored in a two-dimensional tablec0(g,Pet).
During the simulationK, Zrms and x are used to obtain the
two parametersg and Pet , a table lookup is performed, and
c0 is obtained. The values ofK andZrms are estimated from
the resolved-scale kinetic energy and scalar variance~a cor-

FIG. 3. Dependence of the ARM model coefficient,c0 , on g5D f /2LZ for
various values of Pet . The asymptotic limit at high Pet numbers isc0

54.1.
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rection to account for the subgrid-scale part41,45 could be
used if required! and the value ofx is calculated from the
scalar subgrid-scale dissipation, as presented later in Sec. IV.

The difference in this methodology with respect to the
original one32 is only the adoption of the Obukhov–Corrsin
spectrum for the scalar field, rather than the Kolmogorov
spectrum. The consequences are that the physical parameters
entering the model, namely, Pet5K1/2LZ /D andg5D f /2LZ

with LZ5K1/2Zrms
2 /x, are given by the scalar time scale

Zrms
2 /x instead of the velocity time scaleK/e, thus reducing

the value of Pet and increasingg by about a factor of 2.

III. A PRIORI ANALYSIS

A. Description of the DNS

In this section we present results froma priori tests us-
ing the DNS results of a spatially evolving turbulent plane
jet,46 validated in detail against experimental data. The jet
develops in the streamwise coordinatex, with the nozzle, of
width h, being located atx50. The crosswise coordinate isy,
and the homogeneous spanwise coordinatez. The Reynolds
number at the inflow based on the jet width is Reh53000,
increasing until an approximate value of 4800 near the out-
flow, which corresponds to a Taylor microscale Reynolds
number of 145, defined as Rel5ql/n with q252K and l2

55nq2/e. The Schmidt number is 1.0. The size of the physi-
cal domain is 15h316h34h, being discretized by a grid of
39033903130 points. In the fully developed region of the
jet, the grid spacing compared to the Kolmogorov scale is
Dg /h53.2. The inflow conditions are as follows. The mean
profiles of streamwise velocity and scalar are given by hy-
perbolic tangent profiles in each shear layer. In addition, a
solenoidal fluctuation with broadband spectrum peaking at
the most unstable frequency of the spatially evolving shear
layer is imposed. Averages are performed in the homoge-
neous directionz and time. The CPU time for the DNS was
about 22000 Cray T3E hours.

Figure 4 shows an instantaneous snapshot of the scalar
field. We can see the potential core in the entrance region, the
merging of the two shear layers and the transition to the jet
zone. The engulfing of exterior irrotational fluid and the rich-

ness of scales are clear. Overall quantities are shown in Fig.
5, representing the growth of the jet thickness~based on the
half-width values! of the streamwise averaged velocity,^U&,
and the mean scalar^Z&. The linear growth after an initial
region, predicted by the self-similar analysis of the jet in the
boundary layer theory, is observed. The LES data in this
figure area posteriori results that will be discussed later.

The subgrid-scale model was analyzed at a downstream
location x/h511.0, where the flow is fully developed and
the small scales near the centerline present a more isotropic
behavior. Figure 6 shows the mean,^Z&, and the root-mean-
square,Zrms, at this position. The value of the characteristic
parameters entering into the model areLZ5K1/2Zrms

2 /x
50.82h and Pet5K1/2LZ /D5475. As explained in the pre-
ceding section, the only input required for the spectral for-
mulation of the ARM model is the actual scalar spectrum.
More precisely, only its shape in the subfilter range is re-
quired, since the expression for the model coefficient, Eq.
~23!, is invariant under the multiplication of the spectrum by
a constant. Figure 7 shows the scalar spectrum at the center-
line of the jet compared to the model spectrum, Eq.~42!. The
one-dimensional spectrum is obtained from the time series
using Taylor’s hypothesis. Such a hypothesis is reasonable
because, though the downstream coordinate is inhomoge-
neous, its characteristic scale is large compared with the

FIG. 4. DNS of a passive scalar. Instantaneous plot of the scalarZ for a
plane of constantz. Black corresponds toZ51 and white toZ50. Vertical
line indicates the planex/h511.0 and the square corresponds to the filter
volume ofD f /Dg516.

FIG. 5. Evolution of the half-width of the mean profiles. Streamwise veloc-
ity: s, ^U&DNS; d, ^U&LES . Scalar:h, ^Z&DNS; j, ^Z&LES .

FIG. 6. Profiles of mean,̂Z&, and root-mean-square,Zrms, of the scalar at
x/h511.0: s, ^Z&DNS; d, ^Z&LES ; h, Zrms,DNS; j, Zrms,LES.
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crosswise one, which in turn is larger than the subfilter scales
we are interested in. It is observed that the model scalar
spectrum does not represent accurately the actual one, which
is expected given the low Pe´clet number of the flow and the
proximity of the inflow boundary. Interestingly, the model
energy spectrum is a better approximation to the DNS value
of E(k), the turbulent kinetic energy spectrum, than to the
corresponding scalar one,EZ(k). The filter sizesD f consid-
ered are 4Dg , 8Dg , and 16Dg , with Dg denoting the grid
spacing, and the characteristic length ratios are shown in
Table I, along with the typical values of the subgrid-scale
fluctuations.

B. Performance of the ARM model

The following results were obtained discretizing the fil-
tering operation by a Simpson rule and using a uniform grid
with the same resolution as the DNS, instead of the coarser
one used in a LES. The difference is the energy contained in
the lobes of the top-hat filter transfer function, which can be
estimated to be less than 1% of the subfilter energy, as ex-
plained in Appendix C. Besides, the use of the DNS grid
reduces the aliasing error due to the numerical calculation of
the different nonlinearities; from this point of view, thea
priori analysis gives an upper bound to the accuracy of a
LES, where this resolution power is unavailable. The three-
dimensional filtering is done by applying a one-dimensional
filtering consecutively in each direction.

1. Prediction of the model coefficient and subgrid
variance

The only input to the spectral formulation of the ARM
model is the one-dimensional spectrumFZ(k1). Figure 7
shows the actual one as obtained from the DNS. This is
related to the three-dimensional scalar spectrumEZ(k), en-
tering the expressions for the coefficientsai in Eq. ~23!, by42

EZ~k!52k
dFZ~k!

dk
~45!

if isotropy is assumed. However, for this low Pe´clet number
flow, the general expression ofEZ(k) proportional tok25/3

is invalid, and a curve fit to the spectrum given by the DNS
is used. This fit yields

FZ}
1

~0.51u!1.2
exp~29z1.5!, ~46!

which was used to calculateEZ with Eq. ~45! and obtain the
results shown in this section.

The model coefficient for different filter sizes is shown
in Fig. 8. Only half of the profile is shown for clarity. It is
observed that the agreement between the exactc0(y) and the
value obtained with an assumed spectrum is very good for
the small filter size,D f /Dg54, but there is certain underpre-
diction for the case ofD f /Dg516. The reason is that the
assumption of isotropy for the range of subfilter scales is
invalid for large filter sizes. This underprediction will be re-
flected in the results to be presented in the following, and it
will be studied in Sec. V, where the different sources of error
in the ARM approach are reviewed.

Figure 9 shows the effect of the filter size on the subgrid-
scale variance. As the filter size increases, the assumed spec-
trum and isotropy condition are less accurate and precision
diminishes, consistently with the underprediction of the
model coefficient shown in Fig. 8. That same graph shows
the poorer result given by the scale similarity model, ex-
pected from the considerations seen in Sec. II. The test filter
used in the scale similarity model was twice the filter size
D f /Dg516, using as coefficient the value29 of 1.3052.

FIG. 7. Scalar 1D spectra,FZ(k1): —, DNS spectrum; –––, general model
spectrum; –-–, fit model spectrum. Location of the different filtersD f /Dg :
d, 4; j, 8; andm, 16. Solid vertical line indicates grid cutoff, 2Dg .

TABLE I. Filter sizes.D f is the filter size andDg the grid spacing.h is the
nozzle width,dZ indicates the half-width of the jet,hZ denotes the Batchelor
scale, andg is defined byD f /2LZ . Subfilter variances correspond to the
centerline.

D f /Dg D f /h dZ /D f D f /hZ g3102 ^Zsg
2 & ^Zsg

2 &/Zrms
2

4 0.13 15.0 12.8 2.06 0.007 0.17
8 0.26 7.5 25.6 4.13 0.013 0.32

16 0.53 3.8 51.2 8.26 0.020 0.50

FIG. 8. Predictions of the ARM model coefficient. Hollow symbols corre-
spond to exact values and solid symbols to ARM model predictions~as-
sumed spectrum!. Circles and triangles denote filter sizes of 4 and 16, re-
spectively.
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In order to study the instantaneous local behavior, scatter
plots of the pointwise prediction of the ARM model and the
exact values derived from the DNS were considered. For a
fixed crosswise location, the data sequence obtained by the
model ~M! for different spanwise positions and times was
compared with the corresponding exact DNS values~E!, cal-
culating the correlation coefficient by

CEM5
^EM&2^E&^M &

A~^E2&2^E&2!~^M2&2^M &2!
. ~47!

For the subfilter variance, the study was done at the center of
the jet, where its value is maximum, and the results are gath-
ered in Table II. ARM provides higher correlation coeffi-
cient, 0.89, than the scale similarity model, 0.71. The scale
similarity coefficient can adjust the slope of the regression,
but not the correlation coefficient. Similar conclusion can be
drawn from Fig. 10, which shows the contour plot of the
field Zsg

2 (x). It can be seen, first, that reconstruction works,
and, second, that ARM achieves a significant improvement
over SSM by including only one additional filtering opera-
tion.

To conclude this part of the discussion, the realizability
condition of 0<ZM<1, satisfied by the original fieldZ, was
studied. This boundedness of the intermediate field is not
strictly required since we are not looking forZ, but is defi-
nitely desirable since some of the functionsf (Z) only make
sense for values of its argument between 0 and 1. When this
condition was violated,ZM was artificially clipped to that
interval. At the center of the jet the conditionZM,0 oc-
curred less than 1% of the times, whereas the situationZM

.1 happened less than 2%, both being very low values. The
behavior at the edges of the jet was less smooth, and the
frequency ofZM being negative was an order of magnitude
higher. The reason is the strong gradient ofZ(x) at the vis-
cous superlayer.

2. ARM performance for polynomial terms

The first type of nonlinearity analyzed is a power func-
tion,

Y~Z!5Zn, n52,3,... . ~48!

The motivation for these polynomial functions is twofold.
First, the algebraic dependence of the reaction rate on the
species mass fractions. The reaction rate of a particular el-
ementary reaction step in a reacting flow involvingN species
is generally described by2

v5kr)
j 51

N

c
j

n j8, ~49!

wherecj denotes the concentration of the speciesj, related to
the species mass fractionYj throughcj5rYj /Wj with Wj

being the molecular weight of the speciesj, and kr is the
specific reaction-rate constant. The exponentsn j8 are the
stoichiometric coefficients of the reactants in that reaction
step. This study considers a nonlinear functionZn as a first
step to see the ability of the ARM model to predict the
subgrid-scale part of the reaction rate coming from the de-
pendence on the species mass fractions.

The second motivation arises from the presumed PDF
approach, to be discussed later, that requires the input of a
certain number of subgrid-scale moments,$Zn2Z̄n,n
52,3,...%, in order to define the PDF.

The functionY(Z)5Z4 is now considered. In terms of
the reaction rate dependence on the species mass fractions,
more typical of reacting systems are the casesZ2 or Z3, and
the caseZ4 can be thought of as a worst-case scenario. Fig-
ure 11 presents the expected value of the subgrid-scale con-
tribution, Y(Z)sg, for different filter sizes. Similarly to the
variance, deviations of the model prediction with respect to
the exact profile increase as the filter size increases, going
from 3% to about 20% for the largest filter size ofD f /Dg

516. In principle, part of the error is due to the underesti-
mation of the variance, observed in Fig. 9, and some part is
intrinsic to the nonlinearity, i.e., due to the assumption un-
derlying Eq.~28!. Figure 11 also displays the prediction us-
ing the exact model coefficient. By exact model coefficient
we mean the profilec0(y) obtained directly from the DNS
data by Eq.~22! without assuming any model spectrum. In
this case the agreement is very good, showing that the dif-
ferences between the ARM prediction and the DNS result is,
in these cases, mainly due to inaccuracy inc0(y).

Correlation coefficients were calculated at the centerline,
where the subfilter part of these polynomial nonlinearities
achieves its maximum value. The results are shown in Table
II. It is seen that the values ofCEM for Zsg

4 are similar to
those of the variance, of the order of 0.90, indicating again
that this type of nonlinearity is well predicted by the recon-
struction procedure due to the smoothness ofZ4. We have

FIG. 9. Prediction of the SGS variance. Hollow symbols correspond to
exact values and solid symbols to ARM model predictions. Circles, squares,
and triangles denote filter sizes of 4, 8, and 16, respectively. Dashed line
indicates the SSM model prediction forD f /Dg516.

TABLE II. Correlation coefficients obtained with the ARM model for poly-
nomial nonlinearitiesY(Z). Subfilter and total terms~subfilter1resolved!
are shown for different power degrees.

D f /Dg Zsg
2 Zsg

4 Zsg
8 Z2 Z4 Z8

4 0.97 0.97 0.96 1.00 1.00 1.00
8 0.93 0.93 0.93 1.00 1.00 0.99

16 0.89 0.89 0.88 1.00 0.99 0.95
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included in that same table the correlation coefficients of the
total termZ45Z̄41Zsg

4 , which is the actual one entering in
the governing equations;CEM is increased with respect to the
subgrid-scale one since we add an exact term that is larger
(^Z̄4&50.079 and^Zsg

4 &50.038 at the centerline!, and the
final values are aboveCEM50.99. The realizability condi-
tion, 0<Z4<1, was always satisfied.

To observe the effect of higher power degrees, the case
Y(Z)5Z8 was considered, the resulting correlation coeffi-
cients being shown in Table II. In the case of the subgrid-
scale field,Zsg

8 , the values ofCEM are very much like those
of Zsg

4 , of the order of 0.90. However, the ones of the total
term Z̄81Zsg

8 are reduced compared to the fourth-degree
case, though they stay above 0.95. The reason for this de-
crease ofCEM in the total term is that the resolved part is
now smaller than the subgrid-scale part,^Z̄8&50.0062 com-

pared to^Zsg
8 &50.032 at the centerline of the jet, and the

exactness of the first one contributes less to the total term
than in the caseZ4.

The conclusion from this analysis is that the ARM model
is a highly accurate procedure to recover the subgrid-scale
part of polynomial terms~at least until degrees of order
eight!. The reason is that the leading order term in the Tay-
lor’s formula Eq. ~29! involves the dominant part of the
subgrid-scale contribution. Errors in predicting the expected
value,^Y(Z)sg&, in the case of a polynomial nonlinearity are
primarily due to inaccuracies in estimating the model coeffi-
cientc0 in the reconstruction procedure. In case of using the
spectral variant of ARM, these errors are expected to de-
crease as the Pe´clet number increases and the scalar spec-
trum in the subgrid-scale range tends to a more isotropic
form.

3. ARM performance for infinitely fast chemistry

In the conserved scalar approach to turbulent combus-
tion, the density is the coupling between the chemical part of
the problem and the fluid dynamical part,5 and r(Z) is of
major interest,Z being the mixture fraction. Under the as-
sumption that pressure and molecular weight of the mixture
are approximately constant, the density varies with the tem-
perature as

r~Z!51/T~Z!. ~50!

In a further step, the Burke–Schumann approximation2 leads
to a piecewise linear dependence ofT(Z) with a peak value
of the adiabatic flame temperatureTf at the stoichiometric
mixture fractionZst . The two functions,T(Z) andr(Z), are
considered. A third interesting nonlinearity comes from the
radiation phenomena, enhanced by the high temperatures. A
case representative of the optically thin regime was treated

FIG. 10. Contour plots of the fieldZsg
2 (x) at the planex/h511.0 ~jet is coming perpendicular through the paper!. ~a! Exact DNS,~b! ARM model, ~c! SSM

model.

FIG. 11. Prediction of the SGS part ofY(Z)5Z4. Hollow symbols corre-
spond to exact values and solid symbols to ARM model predictions. Circles,
squares, and triangles denote filter sizes of 4, 8, and 16, respectively. Dashed
line indicates prediction forD f /Dg516 using the exactc0(y).
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by the functionQ(Z)5T(Z)4. However, the shape of this
curve is very similar to the Arrhenius termv(Z) for activa-
tion temperaturesTa around 10Tf , a nonlinearity that will be
covered in the following section, and, therefore, results for
Q(Z) are not shown explicitly.

In a methane–air mixture, the stoichiometric mixture
fraction is 0.055 and a characteristic value of the adiabatic
flame temperature2 can be taken to be 2200 K, approximately
an order of magnitude above standard room temperature.
Hence, the functionT(Z) considered in the study corre-
sponds toZst50.055 andTf510, temperatures being nor-
malized by the cold stream value. This curve, along with the
densityr(Z)51/T(Z), is shown in Fig. 12. In addition, the
temperature gradient across the flame is smoothed by means
of a hyperbolic tangent profile47 over a lengthd50.01 in the
mixture fraction space. Sometimes the fuel stream is diluted
with inert gases, which increases the value ofZst , and thus
the caseZst50.2 andd50.1 was also analyzed.

Expected values of the density subgrid-scale part,
r(Z)sg, are plotted in Fig. 13 for the caseZst50.055. As
explained in Appendix A, Eq.~A11!, the positive curvature
of r(Z) implies positive subfilter contribution, as observed

in the results. Accordingly, the sign of the subgrid scale part
of T(Z) is negative.

Figure 13 shows that predictions are not as good as the
earlier case of polynomial functions, which is to be expected
by the strongly nonlinear nature of the functionr(Z). It is
seen in Fig. 12 that there is a characteristic scaleDZ'Zst

50.055 wherer changes rapidly from 1 to 0.1, whereas the
power functionY(Z) varies smoothly withZ. On the other
hand, a typical size of the subfilter fluctuation can be esti-
mated from^Zsg

2 &(y), plotted in Fig. 9, at the crosswise po-
sition where ^r(Z)sg& is maximum, which yieldŝ Zsg

2 &1/2

'0.05 for the smallest filter size of 4. Since the level of
subfilter fluctuation is of the order ofDZ, the remainder
E2(r ) of the expansion in Eq.~29! is relatively large. More
detailed analysis of the error will be presented in Sec. V. It
was found as well that, in contrast with the polynomial non-
linearity, the error in the ARM model prediction for the den-
sity is entirely due to that remainder; the subfilter part was
calculated using the exact model coefficientc0(y) and the
result did not differ appreciably from the curves shown in
Fig. 13.

The same reasoning applies to the results obtained for
the temperatureT(Z), which behaves similarly to the density
but with opposite sign. The only difference is that the error in
the prediction of the averaged profiles ofT(Z)sg is smaller
for the smallest filter size,D f /Dg54, of the order of 10%,
and grows withD f , as occurred with the power function,
until approximately 20% forD f /Dg516. For the density, as
seen in Fig. 13, the expected value of the subfilter part de-
parts from the exact value at small filter sizes more than it
does at large filter sizes, resulta priori unexpected. Little
differences were found between the case ofZst50.055 and
Zst50.2.

Correlation coefficientsCEM were calculated at the
crosswise locations of maximum averaged subfilter parts and
are gathered in Table III. They are of the order 0.90 and
above, and they decrease with the filter size. It is also shown
that the temperature is better predicted than the density by
the ARM model. The difference between the caseZst

50.055 andZst50.2 is not very significant,CEM increasing
slightly from the first case to the second one due to the
smoother profiles ofT(Z) andr(Z) observed in Fig. 12.

4. ARM performance for the Arrhenius term

The dependence of the specific reaction-rate constantkr

on the temperatureT is often given empirically by the
Arrhenius law2

kr~T!5Ae2Ta /T, ~51!

FIG. 12. Profiles of densityr(Z) and temperatureT(Z) considered in the
study. Solid line corresponds toZst50.055 and dashed line toZst50.2.

FIG. 13. Prediction of the SGS part ofr(Z). Hollow symbols correspond to
exact values and solid symbols to ARM model predictions. Circles, squares,
and triangles denote filter sizes of 4, 8, and 16, respectively. Vertical solid
line indicates position of the stoichiometric surface,^Z&50.055.

TABLE III. Correlation coefficients obtained with the ARM model for tem-
perature,T(Z), density,r(Z). Case~a! corresponds toZst50.055 and case
~b! to Zst50.2.

D f /Dg Tsg
~a) rsg

~a) Tsg
~b) rsg

~b)

4 0.97 0.94 0.98 0.96
8 0.95 0.92 0.96 0.93

16 0.92 0.90 0.94 0.91
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whereTa is anactivation temperatureandA is thefrequency
factor for the reaction step. The activation temperature is a
constant butA can have a weak dependence onT, generally
proportional toTa, a,1. In this a priori analysis, we con-
sider the function

v~Z!5e2Ta /T~Z! ~52!

as a starting point to ascertain the ability of the ARM model
to predict subgrid-scale contributions to the reaction rate
coming from the Arrhenius term. Equation~52! represents a
strongly nonlinear function of the mixture fractionZ.

The profilesT(Z) used for this nonlinearity are those of
the preceding section, i.e., the casesZst50.055 andZst

50.2 with Tf510, and an activation temperature ofTa /Tf

510 was fixed. An additional~more localized inZ space!
situation of Ta /Tf550 at Zst50.055 was also considered.
These curvesv(Z) are shown in Fig. 14.

Expected values of the subfilter partv(Z)sg for the case
Zst50.2 are plotted in Fig. 15. For the smallest filter sizes,
the agreement between the exact subgrid contribution and
the predicted value from the model is good, with errors
smaller than or around 10%. But as the filter size is increased

the behavior is poorer, with errors around 30% forD f

516Dg . As in the case of the functionsr(Z) andT(Z), the
error in the ARM model for the case ofv(Z) is due to the
relatively large remainderE2(r ) in Eq. ~29! because the pre-
dictions using the exact model coefficientc0(y) were the
same. Similar results are obtained for the other two cases of
v(Z).

Positive and negative subfilter contributions are ob-
tained, accordingly to the alternation of sign in the curvature
of v(Z), shown in Fig. 14, and the explanation given in
Appendix A, Eq.~A11!. The physical reason is easy to un-
derstand. In the region where the stoichiometric surface is
located, Z̄'Zst , the additional subgrid-scale fluctuations
move the scalarZ toward lower values ofv(Z) and therefore
they tend to decreasev̄. Similarly, for spatial locations
where Z is such thatv(Z̄)'0, sufficiently large subfilter-
scale fluctuations can bring the scalarZ inside the nonzero
interval of v(Z), and therefore the subgrid-scale part is
positive.

Figure 16 shows the expected value of the resolved and
subgrid-scale parts of the Arrhenius nonlinearity for the filter
sizeD f /Dg516. The total termv̄5v(Z̄)1v(Z)sg is the one
entering the governing equations, and the prediction given by
the ARM model corrects about 60% of the overestimation
caused by the resolved part, leading to a final error of about
15%. It is worth noticing that if the mean reaction rate were
calculated using only the mean profile^Z̄&, i.e., using the
approximation ^v̄&'v(^Z̄&), it would yield a maximum
value of 1~in these normalized units! at both sides of the jet,
where ^Z̄&'Zst . However, fluctuations around the mean
value are rather large in this flow and such a simplification
leads to a substantial overprediction of the peak expected
value of the Arrhenius term, since the true maximum shown
in Fig. 16 is about 0.3.

With respect to the pointwise behavior of the ARM
method in the case of the Arrhenius nonlinearity, scatter plots
of model predictions against exact DNS values were ob-
tained for a crosswise locationy at which ^v(Z)sg& was
maximum. The correlation coefficientsCEM , calculated as

FIG. 14. Arrhenius nonlinearityv(Z) considered in the study: —,Zst

50.2, Ta /Tf510; –––, Zst50.055, Ta /Tf510; and ¯, Zst50.055,
Ta /Tf550. A characteristic scaleDZ is indicated for the first case.

FIG. 15. Prediction of the SGS part ofv(Z). Hollow symbols correspond to
exact values and solid symbols to ARM model predictions. Circles, squares,
and triangles denote filter sizes of 4, 8, and 16, respectively. Vertical solid
line indicates position of the stoichiometric surface,^Z&50.2.

FIG. 16. Different parts of the Arrhenius term withZst50.2 and D f

516Dg . Hollow symbols correspond to exact values and solid symbols to
ARM model predictions:h, j, SGS part̂ v(Z)sg&; s, d, total term^v̄&.
Dashed line denotes the resolved part^v(Z̄)&. Vertical solid line indicates
position of the stoichiometric surface.
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previously explained, are gathered in Table IV. Values of
CEM for the subgrid-scale part are of the order of 0.90 for the
smooth case ofZst50.2, but they decrease for the other two
situations, as the characteristic scaleDZ of the nonlinearity
v(Z) is reduced, for the same reason explained previously in
the case ofr(Z) or T(Z). With respect to the realizability
condition 0<v(Z)<1, the first part of the inequality was
violated less than 1% of the times and the second only less
than 0.03%. However, for the cases ofZst50.055 they in-
creased up to values of 4%, corresponding to the case
Ta /Tf550.

Regarding the first caseZst50.2, for filter sizes of 4 and
8, CEM is slightly below the corresponding correlation coef-
ficients for the case of the polynomial nonlinearities, which
seems plausible because the Arrhenius term is more nonlin-
ear. However, for the filter size of 16 the ARM prediction for
this last nonlinearity correlates better with the exact values
than in the case ofZ4 or Z8. This behavior is, once more, a
consequence of the particular shape ofv(Z). Let us recon-
sider Fig. 14, which shows thatv(Z) has a well-defined
nonzero region of lengthDZ, and think of a location in the
flow domain that has a value ofZ that falls into that zone. As
one increases the filter size, so does the subgrid-scale fluc-
tuationZsg

2 and the subgrid-scale contribution tov ~in abso-
lute value!. However, when (Zsg

2 )1/2 becomes of the order of
or larger thanDZ, these fluctuations move the scalar to
zones ofv'0 and the subgrid contribution is null regardless
of the magnitude ofZsg

2 as long as (Zsg
2 )1/2*DZ. This satu-

ration phenomenonis observed as well in the study of the
PDF approach, to be discussed later, and is the reason for the
insensitivity of the result to the use of the exact model coef-
ficient.

When the resolved partv(Z̄), known exactly, is added
to the subgrid-scale part, the correlation coefficients shown
in the last three columns of Table IV vary. If the unresolved
contribution is small compared to the resolved one, then
CEM increases. However, the improvement in the correlation
is not as strong as in the case of the polynomial because of
the fact that both parts have opposite signs, and the resulting
total term can have values of the order of or smaller than the
unresolved part. In this way we see how the correlation co-
efficient in the case ofD f /Dg516 drops from 0.9 in the case
of the subgrid-scale field to 0.84 in the case of the total field
of v(Z) for Zst50.2.

Cases~b! and ~c! in Table IV are more challenging
Arrhenius nonlinearities. It can be seen from the correspond-
ing correlation coefficients that only the resolution with

D f /Dg54 ~30 points per jet halfwidth! gives good results
with the ARM model.

From the preceding discussions of the results for the
nonlinearities r(Z), T(Z), and v(Z), the ratio l
5(Zsg

2 )1/2/DZ comes up physically as the parameter that de-
fines the range of applicability of the ARM model. This re-
sult was already obtained mathematically in Sec. II. The nu-
merator gives the level of fluctuation around the filter value
and it is controlled by the filter size. The denominator is the
characteristic scale inZ space of the particular nonlinearity
and it is dictated by the nature of the nonlinearity.

IV. A POSTERIORI ANALYSIS

A. Description of the LES

Large-eddy simulation of a spatially evolving turbulent
plane jet has been previously performed48,49 successfully. In
the current work, a LES is conducted to perform ana poste-
riori analysis of the ARM model. A dynamic mixed model is
used in the momentum and scalar equations, so that the
subgrid-scale stress tensor and the subgrid-scale flux vector
are given by

t i j
d 5r~ ūi ū j2u% iu% j22nsgS̄i j

d !,
~53!

qi5r~ ūi Z̄2u% iZ% 2Dsg]Z̄/]xi !,

wherensg5CdD f
2uS̄u, Dsg5CZdD f

2uS̄u, and Cd and CZd are
computed dynamically.S̄i j

d is the deviatoric part of the strain
rate tensor of the filtered velocity field, anduS̄u is defined by
(2S̄i j S̄i j )

1/2. This closure of the subgrid terms corresponds to
an incompressible case, whereas the simulation was com-
pressible. However, the convective Mach number is 0.16 and
the jet had the same temperature as the ambient fluid, incom-
pressibility being therefore a good approximation, sufficient
to test the ARM model.

As explained during the introduction of the model, first,
havingZ̄ from the simulation, second, estimatingK andZrms

2

from resolved-scale quantities and using the subgrid-scale
dissipation forx to obtain the model coefficientc0 from a
two-dimensional table, we can calculate the subgrid-scale
contribution, f (Z)2 f (Z̄), using the ARM model, Eq.~28!
and Eq.~20!, for any given nonlinear functionf (Z). In this
flow, averages are taken in thez direction and time, and
therefore they are unavailable from the beginning;c051 can
be assumed initially to build up the required statistics.

The notation follows that of the DNS description. The
computational domain is 16h316h34h, being discretized
by a grid of size 643112316. This yields a ratio of grid
spacing between the DNS and LES ofDg

LES/Dg
DNS58. Since

the LES grid can support wavelengths as small as 2Dg
LES and

the dynamic mixed model is applied with the grid filter size,
D f52Dg

LES, these LES results should be comparable with
results obtained by filtering the DNS withD f /Dg

DNS516,
discussed in Sec. III. The test filter used in the implementa-
tion of the dynamic procedure is 2D f . The numerical algo-
rithm used is a sixth-order compact scheme for the spatial
derivatives and a fourth-order Runge–Kutta scheme for the
time advancement. The number of grid points in the present

TABLE IV. Correlation coefficients obtained with the ARM model for the
Arrhenius termv(Z). Case~a! corresponds toZst50.2 andTa /Tf510,
case ~b! to Zst50.055 andTa /Tf510, and case~c! to Zst50.055 and
Ta /Tf550.

D f /Dg vsg
~a) vsg

~b) vsg
~c) v̄ (a) v̄ (b) v̄ (c)

4 0.96 0.93 0.85 0.99 0.95 0.71
8 0.92 0.90 0.78 0.93 0.81 0.49

16 0.90 0.87 0.72 0.84 0.56 0.29
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LES is 172 times smaller than the DNS, which implies a
much lower computational cost. The simulation took about
400 Cray T3E hours. The grid is uniform in the streamwise
and spanwise coordinates,x andz, respectively. In the cross-
stream coordinate,y, a small stretching of 2.5% is utilized in
order to have enough resolution in the shear layers at the
inflow. This stretching implies nonuniformity of the filter,
and therefore noncommutativity between the derivative and
the filter operations iny, but the associated error has been
shown to be negligible for these levels of inhomogeneity.48

The Schmidt number is unity.
In Fig. 17 an instantaneous snapshot of the scalar field

from the LES is presented. Comparing with the DNS case in
Fig. 4, the truncation in the range of resolved scales is obvi-
ous. Nevertheless, the general structure of the jet is pre-
served, showing large-scale structures and engulfing of exte-
rior irrotational fluid. The growth of the jet is shown in Fig.
5, along with the DNS results. As previously reported,48,49

the agreement is good. The small departures are due to the
difference in the inflow conditions~filtering of the broadband
fluctuation field!, which is strongly felt in this initial region
of the jet. Figure 6 shows the mean profile,^Z̄&, and root-
mean-square profile,Z̄rms. The fluctuation about the mean in
the LES is smaller because the subgrid-scale contribution is
not taken into account in that plot.

B. Performance of the ARM model

The model coefficientc0 is shown in Fig. 18, wherea
posteriori results are compared with the value obtained from
the DNS data. The difference with thea priori analysis is the
utilization of resolved values of turbulent kinetic energy, sca-
lar variance and subgrid scalar dissipation. The inputs to the
ARM model are a characteristic time,Zrms

2 /x, and a velocity
scale,K1/2. The first one might be expected to be well rep-
resented byZ̄rms

2 /xsg, i.e., using the resolved scalar variance
and the subgrid-scale dissipation,xsg52^2qi]Z̄/]xi& . The
latter has the deficit of the unresolved scales. As a conse-
quence, the model coefficient is slightly below the result ob-
tained from the DNS analysis, as can be seen in Fig. 18. This
underprediction can be compensated by the estimate of the
total kinetic energy,K, from the resolved part,Kr , using the

methodology explained in Pope.41 In a similar way to the
integral analysis of previous sections we end up with

Kr

K
5122.1640g2/3, ~54!

for the case of a top-hat filter plus a sharp spectral cutoff at
2p/D f and valid only for high Reynolds numbers when the
filter size is well inside the inertial subrange. The value of
the Kolmogorov constant was set toCk51.5. These condi-
tions do not hold in this particular low Reynolds number
flow and we need to use a more specific kinetic energy spec-
trum, a good approximation being the one given by Eq.~42!.
For the case of the velocity spectrum, the required param-
eters are Ret5K2/ne51157 andL5K3/2/e52.0, as obtained
from the DNS data. The ratio is

Kr

K
50.6032. ~55!

This result was checked once the LES was performed, com-
paring directly with the value ofK from the DNS, obtaining
a ratio of 0.64 and confirming the estimate above. The com-
pensated model coefficient profile is shown in Fig. 18 and we
see that it is very close to thea priori result. Thisa priori
profile of c0(y) was computed with the DNS values ofZrms

2 ,
x and K considering the filter sizeD f(y) corresponding to
the LES grid. The deviation of the value ofc0 obtaineda
posteriori, remaining after the correction in the turbulent ki-
netic energy is applied, is due to the approximationZrms

2 /x
'Z̄rms

2 /xsg and is found to be about 6%. However, the sen-
sitivity of the ARM model to these small variations ofc0 is
observed to be very small, as shown in Sec. II, and therefore
the ARM approach in thea posterioricontext maintains the
high accuracy observed in thea priori one, even if the cor-
rection onK is not used.

Figure 19 shows the expected value of the subgrid-scale
variance as well as the total variance across the jet atx/h
511.0 obtained from the LES. The subgrid-scale variance is
well predicted by the ARM model. In order to obtain^Z2&
correctly, in addition to predict̂Zsg

2 & accurately, it is neces-
sary to obtain the variance of the resolved scales,Z̄rms

2 , pre-
cisely, as shown below. By definition,

FIG. 17. LES of a passive scalar. Instantaneous plot of the scalarZ for a
plane of constantz. Black corresponds toZ51 and white toZ50. FIG. 18. Model coefficientc0 : s, a priori DNS; j, a posterioriLES; m, a

posteriori LES with correction forK.
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Z25Z̄21Zsg
2 . ~56!

Taking the average of both sides,

^Z2&5^Z̄2&1^Zsg
2 &

⇒^Z2&5^Z̄&21Z̄rms
2 1^Zsg

2 &

⇒^Z2&2^Z̄&25Z̄rms
2 1^Zsg

2 &. ~57!

The second equality in the above equations follows from the
definition of the root-mean-square of the scalar. In the case
of filtering in homogeneous directions, the left-hand side of
the last equation in Eq.~57! can be replaced bŷZ2&2^Z&2

5Zrms
2 . In our case, the effect of inhomogeneity in thex and

y directions is weak becauseD f /dZ is small, so that, finally,

Zrms
2 'Z̄rms

2 1^Zsg
2 &. ~58!

We initially used a dynamic Smagorinsky model. However,
as reported by other authors,48 it tends to overestimate the
resolved-scale variables and fluxes. Therefore, a dynamic
mixed model was used so as to obtainZ̄rms

2 correctly. The
results are shown in Fig. 19, where both sides of the Eq.~58!
are plotted, showing the good agreement.

The correct prediction of the subgrid-scale variance and
the resolved field implies a behavior of the ARM model re-
garding other nonlinearities very similar to the one observed
in the a priori analysis. Figure 20 shows the expected value
of the resolved~no subgrid-scale model!, subgrid-scale and
total values corresponding to the functionY(Z)5Z4. As be-
fore, the profiles are expected to be symmetric and only half
of the extent is shown for clarity. It can be observed that the
agreement with the profiles obtained from the filtered DNS is
remarkable. The accuracy of the unresolved part is due to the
ARM model, whereas the good prediction of the resolved
part Z̄4 comes from the dynamic mixed model employed in
the closure of the momentum and scalar transport equations.

The behavior of the model for the case of the exponen-
tial nonlinearity v(Z) is shown in Fig. 21, where the ex-
pected value of the resolved, subgrid-scale and total terms is
presented. The stoichiometric mixture fraction isZst50.4.
The activation and adiabatic flame temperatures are the same

as before,Ta5100 andTf510. The subgrid-scale contribu-
tion follows closely the filtered DNS results. The resolved
part from the LES does not depart seriously from the DNS
result, and therefore the error in the total term^v̄& is similar
to thea priori values, less than 10%. Compared to the use of
no subgrid model~the line with circles!, the results improve
significantly using the ARM procedure.

V. ANALYSIS OF THE ERROR IN THE ARM MODEL

The ARM model has two sources of error. The first one
comes from the computation of the model coefficientc0 by
Eq. ~23!, and the second one is due to the use of the inter-
mediateZM(x) to compute the subgrid part of the nonlinear-
ity, Eq. ~28!. These two issues are now explored.

A. Error in the model coefficient

One approximation implicitly assumed for the particular
case of turbulent flows with one or more inhomogeneous
directions is to considerc0 constant in the filtering process
shown in Eq.~22!. In the present case of a turbulent plane

FIG. 19. A posteriori and filtered DNS values of scalar fluctuations. SGS
part: s, ^Zsg

2 &DNS; d, ^Zsg
2 &LES . Total fluctuation:h, Zrms,DNS

2 ; j, Z̄rms,LES
2

1^Zsg
2 &LES .

FIG. 20. SGS model performance in predicting^Z4&. Hollow symbols de-
note filtered DNS values and solid symbols are LES results:s, d, resolved
term^Z̄4& ~no SGS model!; h, j, SGS term̂ Zsg

4 &; ARM model;n, m, total
term, ^Z4&5^Z̄4&1^Zsg

4 &.

FIG. 21. SGS model performance in predicting the Arrhenius term,^v̄&,
with Zst50.4. Hollow symbols denote filtered DNS values and solid sym-
bols are LES results:s, d, no SGS model̂ v(Z̄)&; h, j, SGS term
^v(Z)sg&, ARM model; n, m, total term^v̄&, ARM model. Vertical solid
line indicates position of the stoichiometric surface.
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jet, the stronger inhomogeneity of the coefficient is in the
crosswisey direction~the inhomogeneity in the streamwisex
direction is much smaller!. However, Fig. 22 shows that the
variation ofc0 with y occurs over distances bigger than the
filter size D f /dZ , shown in Table I, and the error might be
reasonably expected to be small.

Second, in Eq.~23!, a hypothesis is required to obtain
the single unknown term,^(Z2)sg&, to find the coefficienta0 .
The case in which the subfilter scales are in equilibrium has
been considered, leading to the requirement of the three-
dimensional scalar spectrumEZ(k) in the subgrid range as
input to the model. In the present study, a fit to the one-
dimensional scalar spectrumFZ(k1) obtained from the DNS
has been used, Eq.~46!, since the Reynolds number is too
small to have a good representation of the actual spectrum by
the power lawk25/3. In order to obtainEZ(k) from FZ(k1)
isotropy is assumed, and this is inaccurate. One can study
this last hypothesis comparing results from filtering only in
the x direction, where the isotropy assumption is not re-
quired, with those from filtering in the three directions. This
comparison also retains the effect of having an anisotropic
filter kernel,G(x).

Figure 22 shows the exact model coefficient, as obtained
from the DNS according to Eq.~22!, compared to the profile
of c0 yielded by the assumption of a one-dimensional scalar
spectrum. We see that the model prediction is exact for the
case of a one-dimensional filter, as it should. On the other
hand, the agreement in the case of a three-dimensional filter
is not as good, indicating that isotropy of the subfilter scalar
field is an inaccurate approximation at this Reynolds number
and filter size. It is recognized that there are many situations
in which either isotropy does not exist~e.g., strong shear or
presence of gravity!, or the slope of the spectrum is yet un-
known ~e.g., highly compressible cases!, and approaches dif-
ferent to the spectral variant are being derived. Nevertheless,
it is always interesting to consider a spectral analysis as a
first step because it allows to compute estimates easily and it
gives useful insight into the problem.

B. Error in the nonlinearity

The second source of error in the model comes from
using the fieldZM(x), given by Eq.~20!, as a intermediate to
compute the subgrid-scale part for the nonlinearity,
f (Z)sg(x). This step is justified by Eq.~29!, the Taylor ex-
pansion off (Z)(r ) around the constant functionf (Z(x)) in-
side the cell volume,V f(x). Therefore, the relative magni-
tude of the remainderE2(r ) has to be studied for the
different nonlinearities. An estimate of the error is obtained
from Eq. ~35!. To retain only the error intrinsic to the non-
linearity, Eq.~28!, we work with the exactc0(y) ~obtained
directly from the DNS!.

The power functionsY(Z), Eq.~48!, are considered first.
The fourth-degree function has a very small error, and thus
the higher order case,Z8, is considered. Figure 23 shows the
exact error, obtained by subtracting the ARM prediction from
the exact profile, along with the expected value ofE(x,t) as
given by Eq.~35!. We see that the ARM model provides not
only an accurate prediction of the subgrid part of a polyno-
mial term, but a good estimate of the error as well. Besides,
E(x,t) gives a pointwise correction of the standard ARM
prediction if higher accuracy is desired, at the additional cost
of one filtering operation required for calculating (Z3)sg. If
we use Eq.~38! to get a characteristic scaleDZ for the power
functionsY(Z) we obtain the following expression forl:

lY5
iZlsgi
DZ

5
~n22!~Zsg

2 !1/2

3Z̄
. ~59!

An estimate of this controlling parameter can be obtained
considerinĝ Z̄& and^Zsg

2 &1/2, this latter bounding from above
^(Zsg

2 )1/2& according to Eq.~A5!. The values are gathered in
Table V. It is seen thatl is less than 1, indicating that the
first term in the Taylor expansion, Eq.~29!, accounts for a
major part of the nonlinearity, and therefore the ARM ap-
proach provides a good estimate. It is also shown thatl
increases with the filter size and with the degree of the poly-
nomial, as expected.

It should be emphasized that these estimates do not give
a very precise value of the actual error due to the different
simplifications adopted; e.g.,^E&/^Zsg

8 &'0.18 at the center-

FIG. 22. Predictions of the ARM model coefficient for filter of size
D f /Dg516. 1D filter: s, exact;d, assumed spectrum. 3D filter:h, exact;
j, assumed spectrum.

FIG. 23. Error estimate for the polynomial termZ8 with filter size 16:s,
exact error~exact minus ARM-predicted subgrid part!; d, error prediction
from Eq. ~35!.
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line for a filter size of 16, whereasl'0.53. They should be
understood only as representatives of the error obtained com-
paring exact and model subfilter quantities in ana priori
context, and extrapolate them to work ona posterioriprob-
lems. What is given by the expression ofl is the scaling of
the error in the ARM model with the filter sizeD f as l
}D f

1/3, expressed by Eq.~40!. This scaling means that if we
divide the filter sizeD f by 2, the error in the physical model
is reduced by a factor of 1.26. This analytical result agree
with the variation ofl with the filter size observed in Table
V for the nonlinearityY(Z).

With respect to the density functionr(Z), Eq. ~50!, the
expression forl is

lr5
iZlsgi
DZ

'
T8~ Z̄!~Zsg

2 !1/2

T~ Z̄!
'

~Zsg
2 !1/2

Zst
, ~60!

where terms involving derivatives ofT(Z) higher that the
first one have been neglected.T8/T can be estimated by
1/Zst , with T'Tf . Using the values of̂ Zsg

2 &1/2 shown in
Fig. 9 at the crosswise locationy/dZ corresponding tôZ&
5Zst , the values ofl shown in Table V are obtained. It is
seen that they are larger than the polynomial ones. The case
of Zst50.055 for large filter sizes givesl*1, indicating that
the ARM model is close to the limit of applicability. As it
was said for the case of the polynomial, the value ofl51 is
not a clear cut between acceptable and unacceptable behavior
and these numbers are better understood simply by associat-
ing them to the results presented in Sec. III. The second
comment to be made is about the effect ofZst , which is clear
in the expression forl: as the stoichiometry decreases, the
slopedT/dZ increases on the lean side and a smaller level of
subfilter fluctuation, i.e., higher resolution, is required for the
ARM model to be successful. This is observed by comparing
the values of the parameterl between the caseZst50.055
and the caseZst50.2.

Let us consider now the case of the Arrhenius nonlinear-
ity v(Z), Eq. ~52!, for Zst50.2. The parameterl defined by
Eq. ~39! is

lv5
iZlsgi
DZ

'
TaT8~ Z̄!~Zsg

2 !1/2

3T~ Z̄!2
'

~Ta /Tf !~Zsg
2 !1/2

3Zst
, ~61!

an expression valid for high activation energy,T/Ta!1. The
estimate ofl is shown in Table V. It was calculated similarly
to the case ofr(Z), i.e., usingT8/T'1/Zst andT'Tf , be-
cause the stronger subfilter fluctuations~except for the sharp
gradients at the viscous superlayer! appear around the reac-
tion zone~every term in the Taylor’s formula has a factorv!.
It is seen again thatl is higher in this nonlinearity than in the

case of the power function, due to the stronger nonlinear
character and implying a larger error in the prediction of the
subfilter part ofv(Z). Apart from the effect ofZst , ex-
plained already in the density function, the second important
parameter that appears in the expression ofl is the ratio
Ta /Tf . It shows that the relative importance of the remain-
der E2(r ) increases when the activation energy increases,
which is expected becausev(Z) becomes more local. The
example is given by the correlation coefficients obtained for
the caseTa /Tf550, shown in thea priori analysis in Table
IV.

Smaller subfilter fluctuation of the scalar implies better
performance of the ARM model, as described byl, and this
is shown in Fig. 24, which represents the Reynolds average
of the error estimateE(x,t) given by Eq.~35! along with the
actual error in the prediction of̂v(Z)sg&, for the case
D f /Dg54. The results in all the figures are nondimensional-
ized with the instantaneous peak value. Comparing with the
total term^v̄&, shown in Fig. 16, the error in the case of the
filter size of 16 is about 20%. As we reduce the filter size the
accuracy increases, and thus for the case of filter size 4 the
error is about 2% of the total term.

It is interesting to consider the casev(T), a situation
that appears when a conserved scalar approach is not taken.
Then, the ratio (Tsg

2 )1/2/T̄ is the one entering in the definition
of l. Figure 25 shows an estimate of this ratio for the case
Zst50.2, and it is observed that the subfilter fluctuation of
the temperature increases as we approach the edges of the
jet. This behavior with the coordinatey is similar in the case
of higher stoichiometric mixture fractions, likeZst50.5,
which corresponds to the reaction zone being closer to the
centerline. Physically, the intermittency of the edge of the jet
implies higher probability of having blobs of cold fluid than
in the center of the jet, and those are able to produce higher
gradients and therefore higher subfilter fluctuations inT(x),
even if the flame is not located there. Hence, when the reac-
tion is taking place in the center of the jet the ARM model is
expected to perform better than in the case of the stoichio-
metric surface being on the edge.

Finally, it is worth noticing that in the Reynolds-

TABLE V. Estimates of the controlling parameterl for the different non-
linearities. Case~a! of r(Z) corresponds toZst50.055 and case~b! to Zst

50.2, andv(Z) corresponds toZst50.2

D f /Dg Z4 Z8 r (a) r (b) v

4 0.11 0.32 0.68 0.33 0.63
8 0.14 0.43 1.13 0.50 1.04

16 0.18 0.53 1.54 0.68 1.41

FIG. 24. Error estimate for the Arrhenius term withZst50.2 and filter size
of 4: s, exact error~exact minus ARM-predicted subgrid part!; d, error
prediction from Eq. ~35!. Vertical solid line indicates position of the
stoichiometric surface.
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averaged Navier–Stokes~RANS! context, an expression for
the mean Arrhenius term can be obtained carrying out a simi-
lar expansion of the exponential function,1 ending up with
the requirementT8Ta /^T&2!1, a condition that is not usu-
ally fulfilled. The difference between RANS and LES is that,
in RANS, the fluctuationT8 of the temperature about the
mean is fixed by the physical problem, whereas in LES the
subgrid-scale fluctuation can be reduced by decreasing the
filter size untill is small enough.

VI. PRESUMED FDF MODEL

A popular subgrid model for turbulent combustion is the
so-calledpresumed FDF model. In this approach, the filter-
ing operation is written in terms of a probability density
function. Starting from the fine grained PDF,6,7 p8(z;x,t),
one can obtain the filtered fine grained PDF7 by

p8~z;x,t !5E
V

d~Z~r ,t !2z!G~x,r !dr ~62!

to write the filtered value of a general nonlinear function
f (Z) with 0<Z<1 as

f ~Z!~x,t !5E
0

1

f ~z!p8~z;x,t !dz. ~63!

The filtered fine grained PDF is a random function because it
is defined by a deterministic mapping of the random function
Z; for a fixed (x,t) point, the whole curvep8(z) will be
different in different realizations as a consequence of the
random variation ofZ(r ) from one realization to another.
The expected value of a filtered quantity is then given by

^ f ~Z!&~x,t !5E
0

1

f ~z!^p8&~z;x,t !dz. ~64!

The filtered fine grained PDF has been given different names
by different authors: the filtered density function,50 the large-
eddy PDF21 and the subgrid-scale PDF.23,24 As originally
presented,7 p8(z;x,t)dz represents the fraction of the fluid
aroundx ~weighted byG! whoseZ concentration is in the
rangez<Z,z1dz. From now on, we will refer to the fil-

tered fine grained PDF as the filtered density function~FDF!
and it will be denoted byPZ(z;x,t) for notational conve-
nience.

A. Beta-PDF model

In the presumed FDFapproach the FDF is assumed to
follow a prescribed distribution, the beta distribution being
the usual choice.23,24 This is given by

PZ~z;x,t !'PZ~z;Z̄,Zsg
2 !'

za21~12z!b21

*0
1za21~12z!b21 dz

, ~65!

where the denominator is the beta function,B(a,b)
5G(a)G(b)/G(a1b), and the exponents are given by

a5Z̄~ Z̄~12Z̄!/Zsg
2 21!, b5a~1/Z̄21!. ~66!

It is well defined in the sense that the exponentsa andb
are non-negative at any point of space and instant of time as
long as the filter kernel is positive. This is shown as follows.
The positiveness of the filter maintains the order relation,
and thus 0<Z̄<1 because 0<Z<1. Hence,b is positive ifa
is positive, and this latter is true because of the inequality Eq.
~A6!. The limiting casea5b50, which corresponds toZsg

2

5Z̄(12Z̄), has to be handled with more care, since the nu-
merator of Eq.~65! becomes nonintegrable and the denomi-
nator of that same equation becomes infinity. A closed ex-
pression for f (Z) can be obtained by decomposing the
function f (z) in a linear part betweenz50 and z51, f 0

1( f 12 f 0)z, and a remainder,R(z), so that Eq.~63! yields

f ~Z!5 f 01~ f 12 f 0!Z̄1
*0

1za21~12z!b21R~z!dz

B~a,b!
.

~67!

This remainderR(z) is zero at 0 and 1, which eliminates the
possible singularity of the integrand@assuming f (z) is
smooth# in the last term the equation above. Hence, the nu-
merator of this last term is bounded for zero values ofa and
b, obtaining finally

lim
a,b→0

f ~Z!5 f 01~ f 12 f 0!Z̄. ~68!

All this information allows the construction of the map-
ping f (Z)(Z̄,Zsg

2 ) for each nonlinearityf (Z), where 0<Z̄
<1 and 0<Zsg

2 <Z̄(12Z̄). This two-dimensional table is
what is required to perform a LES using the FDF approach,
and can be computed beforehand and then, given the pair
(Z̄,Zsg

2 ) at each point of space and instant of time, interpola-
tion can be used to obtainf (Z). This approach was used in
the a priori results presented below, an approach that was
found to provide a better control of the singularities that
might appear in the integrand, Eq.~65!, and to reduce sig-
nificantly the time of computation.

1. A priori analysis of the beta-PDF model

The beta-PDF approach involves two assumptions, as it
is shown by Eq.~65!. The first one is thatPZ depends only
on the first two moments,Z̄ and Zsg

2 , i.e., different points
with the same filtered and variance values have the samePZ .

FIG. 25. Subgrid-scale temperature forZst50.2. Symbols denote different
filter sizesD f /Dg : d, 4; j, 8; and m, 16. Vertical solid line indicates
position of the stoichiometric surface.
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This is not generally true, and several cases were found
where at two different times the scalar field happens to have
similar filtered and variance values with the FDF being
qualitatively different, showing certain asymmetries or dif-
ferent flatness. The second is that, given that two parameters
are sufficient to represent the FDF,PZ has the particular
shape of a beta PDF. Some realizations are described rea-
sonably well by a beta distribution, as shown in Fig. 26~a!.
However, the beta PDF cannot represent the distribution ei-
ther near the limits 0 and 1 of the scalar or in case of bimodal
distributions; this latter situation is observed in Fig. 26~b!.

By definition of the FDF, the ARM approach can be
written as

f ~ZM !2 f ~ZM !5E
0

1

@PZM
~z!2d~z2ZM !# f ~z!dz, ~69!

where the dependence on (x,t) has been dropped for clarity.
Hence, the ARM approach has an associated FDF,PZM

(z),
which is also of interest. Figures 26~a! and 26~b! show the
FDF computed at a certain instant of time in the center of the
jet and at the crosswise positiony5dZ . They show the FDF
associated with the fieldZ(r ), the original scalar field from
the DNS, and the FDF obtained from the intermediate field
ZM(r ), obtained using the ARM model with the exact model
coefficientc0(y). Along with those two lines the beta PDF is
also plotted. It is striking to see that the FDF ofZM is similar

to the beta distribution with the exact subgrid-scale variance.
It should be noted that the ARM procedure has the Reynolds-
average subfilter variance as input, rather than the detailed
pointwise subgrid-scale variance of the beta-PDF model.

Nevertheless, though the exact FDF is described incor-
rectly, the results obtained with the presumed FDF model
have been found to be fairly good within thea priori
context.24,29,30The reason24 is that, although the model does
not follow the exact FDF, the local deviations balance each
other in the integral of Eq.~63! if f (Z) is not very localized
~the FDF integrates to one, hence, overestimation in some
intervals implies underestimation in others!. Furthermore,
the estimate of the expected value of the FDF,^PZ&(z), is
even better due to the averaging process, as it is shown in
Fig. 27, and therefore the prediction of^ f (Z)& is more accu-
rate than the pointwise behavior~the composite-PDF will be
define later and the corresponding results in Fig. 27 will be
then discussed!.

We now discuss our evaluation of the beta-PDF closure
with the variance given by the scale similarity model as de-
scribed in Sec. III, for the nonlinearitiesY(Z)5Z4, r(Z) for
Zst50.055 andv(Z) for Zst50.2. Though the FDF model
gives the required termf (Z) directly, we subtracted the re-
solved partf (Z̄) in order to directly measure the influence of
subgrid variations of the scalar. Figures 28 and 29 show the
mean profiles for the first two cases and the pointwise be-
havior is again analyzed with the aid of the correlation coef-
ficients, calculated as in the preceding section and collected
in Table VI.

The performance of the FDF model in the case of the
polynomial function is very poor, in the average as well as in
the pointwise behavior, with a correlation coefficient of 0.41
for the filter sizeD f /Dg516. This is less than half the cor-
relation coefficient obtained with the ARM model. Since the
nonlinearityY(Z) is global ~characteristic scaleDZ'1) the
source of this error must be the local subgrid-scale variance
entering the beta PDF, which was shown before to be poorly
estimated by the scale similarity model. If the exact value of
the local subgrid-scale variance is employed, the prediction
is very good, as shown in Fig. 28.

On the other hand, in the case of the densityr(Z), the

FIG. 26. FDF at~a! the centerline and~b! the jet half-width. Hollow sym-
bols denote FDFs ofZ(r ) and solid symbols indicate FDFs ofZM(r ) at the
same point. The solid line corresponds to the beta-PDF approximation with
the exact subfilter variance. Filter size is 16.

FIG. 27. Averaged FDF at the centerline~right set! and at the half-width of
the jet~left set!: —, exact; ---, beta PDF; and̄ , composite PDF. Filter size
is 16.
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behavior is different. The expected values of the subfilter
part are plotted in Fig. 29 and can be compared to the ARM
model results of Fig. 13. For small filter sizes the FDF model
overestimates considerably the subgrid-scale part, and the
prediction improves as the filter size is increased. The corre-
lation coefficients of Table VI present the same trend. In this
case, ARM model yields better results. However, when the
exact variance is used, the estimates are very close to the
exact values for small filter sizes and, though not shown in
that figure for the sake of clarity, they deteriorate asD f be-
comes larger, as could be expected beforehand. Hence, the
error in the FDF model comes from the use of the SSM
model to provide the subfilter variance, error that compen-
sates the underprediction of the assumed FDF with the exact
variance to give seemingly a good estimate of^r(Z)sg& for
D f /Dg516; CEM is, however, relatively low compared to
the ARM result shown in Table III.

The nonlinearityv(Z) with Zst50.2 presents the same
behavior withD f in the average profiles due to the use of the

SSM model, though more smoothly indicating a smaller sen-
sitivity to the subgrid-scale variance. It was found as well
that the predictions for the large filter size of 16 were better
than the ARM model estimates, in the mean profiles as well
as in the pointwise behavior, as can be seen by comparing
Table IV and Table VI.

Several questions arise from these results. First, how
does the sensitivity of the FDF approach to the subgrid-scale
variance depend on the nonlinearityf (Z). Second, what is
the importance of the particular shape of the assumed FDF,
provided that it is a two-moment-based FDF satisfying cer-
tain physical requirements. Third, how does a two-moment-
based FDF behave as the nonlinearityf (Z) becomes more
and more local, i.e., in the limitDZ→0. These issues are
now considered.

2. Sensitivity of the FDF approach to the
subgrid-scale variance

As previously exposed, the assumption of a beta-PDF
with a given mean,Z̄, and a given variance,Zsg

2 , leads to a
unique valuef (Z)sg of the subgrid-scale contribution for any
given function f (Z), which we refer to as the mapping
f (Z)sg(Z̄,Zsg

2 ). Figures 30~a! and 30~b! show isocontours of
this mapping for the two functionsY(Z)5Z4 andv(Z) with
Zst50.2. The region defined by the parabola corresponds to
Eq. ~A6! and it represents all the possible values of the pair
(Z̄,Zsg

2 ) for any point in space at any instant of time. For
Zsg

2 50 we have zero unresolved contribution, which is the
contour line coinciding with the abscissa axis. ForY(Z) the
subgrid-scale part is always positive but, in the case of
v(Z), the zone around the stoichiometry surface is associ-
ated with negativef (Z)sg while zones sufficiently far away
from Zst @out of the region defined by the dashed line in Fig.
30~b!# are associated with positivef (Z)sg, for the reasons
explained in Appendix A.

It can be seen that forY(Z) the contours are approxi-
mately parallel to theZ̄ axis, and therefore any error in the
prediction of the varianceZsg

2 causes appreciable error in
estimating the subgrid-scale value.

On the other hand, for the Arrhenius case, the contours
around the stoichiometric surfaceZ̄5Zst50.2 are more or
less parallel to the ordinate axis onceZsg

2 is above certain
threshold, about 0.01 in this particular case. This means that
large variations of the subgrid-scale variance do not change
the subfilter contributionv(Z)sg very much. The physical
reason was already seen in Sec. III. The filter sizes consid-
ered in thisa priori study correspond to average values of
subgrid-scale fluctuation not much larger than this threshold

FIG. 28. Predictions of the SGS part ofY(Z)5Z4 by the beta-PDF model.
Hollow symbols correspond to exact values and solid symbols to FDF
model predictions. Circles, squares, and triangles denote filter sizes of 4, 8,
and 16, respectively. Dashed line corresponds to FDF with exact variance
for D f /Dg516.

TABLE VI. Correlation coefficients with the FDF model for different non-
linearities. The variance was obtained with the SSM model in the case~a!
and with the ARM model in the case~b!.

D f /Dg Ysg
~a) rsg

~a) vsg
~a) Ysg

~b) rsg
~b) vsg

~b)

4 0.80 0.84 0.89 0.96 0.93 0.96
8 0.77 0.86 0.91 0.93 0.91 0.95

16 0.41 0.86 0.94 0.88 0.87 0.95

FIG. 29. Prediction of the SGS part ofr(Z) by the beta-PDF model. Hollow
symbols correspond to exact values and solid symbols to FDF model pre-
dictions. Circles, squares, and triangles denote filter sizes of 4, 8, and 16,
respectively. Dashed line corresponds to FDF with exact variance for
D f /Dg54. Vertical solid line indicates position of the stoichiometric sur-
face,^Z&50.055.
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~Table I showŝ Zsg
2 &50.02 for D f /Dg516). This fact ex-

plains the increase of the correlation coefficientCEM with
the filter size, shown in Table VI, when the subfilter variance
is predicted inaccurately, as it is the case with SSM.

3. Sensitivity of the FDF approach to the assumed
distribution

As mentioned before, the role of the specific assumption
of a beta PDF for the FDF is also interesting. The idea of an
assumed distribution to statistically describe one or several
scalars for application to turbulent combustion has been
studied by different authors,51 although not in a LES context
until more recently. Several choices have been made: a
Gaussian profile,52 a beta-PDF,53 a density function com-
posed of a uniform distribution with two delta functions at
the limits 0 and 1,54 or a clipped Gaussian.55 All these den-
sity functions are based on the first two moments.

In order to investigate the effect of the assumed shape of
the distribution, we construct the following simple two-
moment-based composite PDF. We start with a uniform dis-
tribution betweenz1.0 andz2,1, which has the given val-
uesZ̄ andZsg

2 as mean and variance. These two conditions,
along with the normalization one, constitute a system of
three equations for three unknowns, namely,z1 , z2 and the
height of the FDF. However, the constraintsz1.0 and z2

,1 allow solution to the previous system of equations if and
only if Zsg

2 ,Z̄2/3 for Z̄,0.5 or Zsg
2 ,(12Z̄2)/3 for Z̄.0.5.

This region in the domain of definition of the density func-
tion is the lower central zone in Fig. 31. For cases withZ̄
,0.5 and subgrid-scale variance greater thanZ̄2/3, the left
lower zone in that figure, we have to modify the presumed
FDF such that it provides the requiredZsg

2 . We do so by
placing a d function at z50, which is the usual solution
found in the literature. The unknowns that define now the
FDF are the magnitude of thed function, the right limitz2 of
the uniform part and the height of this uniform zone. The
equations are the same as before. Admissible solutions are
now those that makez2,1, which imposes a new constraint
in the unresolved variance,Zsg

2 ,Z̄(2/32Z̄). Similarly, we
have the symmetric part, the right lower region in Fig. 31,
with Z̄.0.5 and ad function atz51. Additionally, if Zsg

2 is
larger than the level of fluctuations defined by the previous
equations we are required to place oned function atz50 and
another atz51 besides the uniform distribution between 0
and 1, corresponding to the upper region in Fig. 31. This
particular last case, only possible for high enough values of
Zsg

2 , has already been used in the past.54

A first interesting observation is that a similar partition
of the domain of definition of the FDF into four subregions is
produced by the beta PDF. The boundary of each region is
given by the conditionsa51 or b51, a and b being the
exponents of Eq.~65!. If a,1, or equivalentlyZsg

2 .Z̄2(1
2Z̄)/(11Z̄) an ~integrable! singularity appears atz50,
which corresponds to the case of ad function in the compos-
ite PDF. In the same way, a singularity occurs atz51 when
b,1, which corresponds to the caseZsg

2 .Z̄(12Z̄)2/(2
2Z̄).

The expected values of the various nonlinearities calcu-
lated using the composite PDF are very similar to the ones
obtained using the beta PDF, the prediction of^v(Z)sg& im-
proving slightly at the edges of the jet, and in the polynomial
case being indistinguishable from one another. These results
are clear by considerinĝPZ&(z), which is shown in Fig. 27.

In terms of the pointwise behavior, the scatter plots give
approximately the same correlation coefficients and they are
indeed very much alike. Considering for instance the filter
size D f /Dg516, the power functionY(Z) yields CEM

FIG. 30. Beta-PDF mappingsf (Z)sg(Z̄,Zsg
2 ) for the functions:~a! Y(Z)

5Z4, ~b! v(Z) for Zst50.2. The isocontours represent constant SGS value,
f (Z)sg. The dashed line indicates zero SGS part.

FIG. 31. Partition of the domain of definition of the composite PDF in four
qualitatively different subdomains. The solid curves are the boundaries of
the subregions and the shape of the corresponding PDF is shown as an inset.
The case of the beta PDF is qualitatively the same.
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'0.99 if the beta distribution is used, andCEM'0.98 is the
composite distribution is utilized instead. In the case ofv(Z)
with Zst50.2, CEM'0.97 in both cases.

These results indicate that theparticular shapeof the
adopted FDF isnot very important provided that it satisfies
two conditions. First, the assumed FDF has to be used with
the correctZ̄ and Zsg

2 . Physically this means that the FDF
takes into account intermittency~presence of pure unmixed
fluids inside the filter cell! as well as small-scale diffusive
mixing. The consequence of this condition is shown by the
partition into four subregions with qualitatively different
FDF shapes, as shown in Fig. 31. Second, the nonlinearity
under consideration should not be very localized. If this sec-
ond condition is met, there is compensation of errors in Eq.
~63!, for overestimation of the FDF in some parts of the
interval 0<z<1 implies underestimation in others and, since
the integral averages these deviations, some local inaccuracy
in modeling the FDF is acceptable. Similar results have been
found in the RANS context.10

4. Sensitivity of the FDF approach to the locality of
the nonlinearity

Motivated by the preceding discussion, it is of interest to
observe the behavior of the subgrid-scale model as the length
scaleDZ of the Arrhenius term~see Fig. 14! decreases. In
typical combustion chemistry, the thickness of a nonpre-
mixed flame is approximately proportional to a fractional
power of the rate of local scalar dissipation,4 xst . As xst

decreases, so does the flame thickness inZ space~analogous
to DZ here!. Sincexst is a random variable in a turbulent
flow, the flame thickness varies from point to point and the
subgrid-scale model must provide accurate predictions for
instances in which the flame becomes very thin. We have
seen that the reconstruction procedure can lose accuracy in
such a situation. In a FDF context, the local estimate of the
FDF in an intervalDZ aroundZst becomes more important
and, since a global averaging of error does not occur, the
performance of an assumed FDF model is expected to dete-
riorate. This aspect was studied using the Burke–Schumann
limit for T(Z) and varying the ratioTa /Tf to control DZ.
Instead of the characteristic scaleDZ given by Eq.~38! in
Sec. V, we define it in this particular study by the interval
between the points where the reaction rate drops to 10% of
its maximum value. The characteristic length is then given
by

DZ512
1

11~Tf /Ta!ln 10
. ~70!

The limit DZ50 was analyzed assuming a delta function at
Zst , which yields a direct comparison of actual values of
PZ(Zst) against model predictions.

Figure 32 shows the correlation coefficientsCEM for
both the beta and the composite distributions as a function of
the scaleDZ. The stoichiometric mixture fraction isZst

50.2 and the scatter plots of model against exact pointwise
values were obtained at the location wereZ̄5Zst . The exact
subfilter variance was used. Correlation coefficients are
above 0.70 always, decreasing asDZ is reduced. For rela-

tively large values ofDZ, the composite PDF and the beta
PDF do similarly, as reported before; the nonlinearity is suf-
ficiently global so that the precise shape of the FDF is not
crucial. As DZ decreases, the beta PDF represents slightly
better the FDF, though there is not a big difference between
the two FDF choices. For reacting flow problems in which
DZ is small enough and a correlation greater than 70% is
desired the estimated FDF has to be better than either a beta
PDF or composite PDF.

B. Combination of ARM and FDF approaches

To conclude thea priori analysis, and following logi-
cally from previous results, the ARM prediction of the
subgrid-scale variance was utilized as the input to the FDF
model, since the reconstruction is an approximation of a
higher order than the scale similarity model at the low addi-
tional computational cost of one filtering operation. The
ARM provides the spatial structure of the subgrid-scale vari-
ance field accurately, an input that is required in a presumed
FDF approach.

Figure 33 shows the performance of the FDF–ARM
model for the case ofY(Z)5Z4. The correction in the poly-

FIG. 32. Correlation coefficient between model predictions and exact values
of v̄ at they location of the stoichiometric surface,^Z̄&5Zst50.2, for dif-
ferent characteristic scalesDZ: s, beta PDF;h, composite PDF.

FIG. 33. Predictions of the SGS part ofY(Z)5Z4. Hollow symbols corre-
spond to exact values and solid symbols to FDF–ARM model predictions.
Circles, squares, and triangles denote filter sizes of 4, 8, and 16, respec-
tively.
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nomial case is clear, and the model prediction follows now
the correct shape of the profile. The model prediction is
slightly low, but this comes from the underprediction of the
model coefficient due to low Reynolds number effects, as
exposed previously. For high Pe´clet numbers, asc0 ap-
proaches the asymptotic value, the agreement is expected to
be better. Similarly, correlation coefficients are significantly
increased, as shown in Table VI, going from 0.41 in the case
of the scale similarity model to 0.88 if the ARM model is
used. This is a consequence of the good spatial structure
provided by ARM model. It has to be noted as well that the
prediction of FDF–ARM model is similar to that of the
ARM model alone for these polynomial cases.

Figure 34 correspond to the Arrhenius functionv(Z) for
Zst50.2. The improvement in the Arrhenius case is not very
conspicuous for large filter sizes, because of the small sensi-
tivity of this particular nonlinearity to the subgrid-scale vari-
ance, explained before. This behavior is observed in the ex-
pected values as well as in the pointwise results, with the
correlation coefficient being very similar in the FDF and
FDF–ARM models, 0.94 and 0.95, respectively. The im-
provement is more significant for the smaller filter sizes,
when the influence of the subfilter variance is more notori-
ous. The same conclusions can be drawn for the density
function r(Z).

A further extension of the presumed FDF model, not
explored in this study, is to consider FDF models that in-
volve more than two subgrid-scale moments.56 ARM makes
this feasible by providing the required moments with high
accuracy, as the results from the analysis involving the poly-
nomial terms prove.

The conclusion is that, for polynomial nonlinearities, the
ARM model by itself provides very good predictions, of the
order of or better than the FDF–ARM model, and the imple-
mentation of the ARM is very simple, specially for high
Reynolds numbers when the model coefficientc0 is just a
constant. The same applies for the Arrhenius case and the
density when the filter size is sufficiently small. For large
filter sizes, the performance of FDF–ARM is similar to the
standard FDF, despite the ARM prediction of the structure of

the subgrid-scale variance field being better than the one pro-
vided by the scale similarity model; the reason is the small
sensitivity of the Arrhenius and the density terms to the
subgrid-scale variance once this latter quantity is above a
certain threshold.

VII. CONCLUSIONS

Large-eddy simulation of combustion problems requires
modeling of the subgrid-scale contribution,f (Z)2 f (Z̄), that
arises after filtering terms such as the reaction rate or the
radiation terms, which involve strongly nonlinear functions,
f (Z), of a scalar,Z.

Reconstruction models, in which a intermediate field
ZM(x,t) is estimated to calculate the subgrid-scale part, have
been discussed here, with particular emphasis on approxi-
mate reconstruction using moments~ARM!. The pure decon-
volution procedure, Eq.~14!, presents two drawbacks: first,
the convergence of the Neumann series, Eq.~4!, is too slow,
and, second, deconvolution does not account for the unre-
coverable subfilter scales. On the other hand, the scale simi-
larity model, Eq.~18!, only retains the leading order term of
the reconstruction. The procedure of ARM, Eq.~20!, com-
bines purely mathematical deconvolution with additional
physical input, namely, the expected value of the subfilter
variance. In this work, a model spectrum applicable to the
unresolved subgrid scales is used, which yields the model
coefficientc0 ~see Fig. 3! as an explicit function of the filter
size, D f /LZ , and the turbulent Pe´clet number, Pet . It has
been shown that reconstruction provides a good spatial de-
scription of the subfilter variance and that ARM improves
significantly the SSM prediction by adding only one addi-
tional filtering operation~see Fig. 10!.

A priori studies of the ARM procedure have been carried
out with a DNS database of a spatially evolving turbulent
plane jet for filter sizesD f /Dg of 4, 8, and 16, corresponding
approximately to a LES with 30, 16, and 8 points per half-
width of the jet at the downstream location of interest, 11
times the nozzle width. Here,D f and Dg denote filter size
and DNS grid spacing, respectively.

The results show that the averaged profiles of the
subgrid-scale contribution of the variance,^Zsg

2 &, agree well
with the exact DNS data for the two smaller filter sizes, with
errors less than 5%. The poorer response of the model for
D f /Dg516 is expected due to the large filter size, but still
the error is less than 15% and it is due to the lack of isotropy
of the subgrid scales for this low Reynolds number flow and
the corresponding inapplicability of the model spectrum to
all directions. In terms of the pointwise behavior, correlation
coefficients between model predictions and exact values at
the centerline of the jet are high, about 0.90 for the subgrid-
scale part and above 0.95 for the total term.

Polynomial nonlinearitiesY(Z)5Zn behave very simi-
larly to the subfilter variance, and thus the results show that
the subgrid-scale part can be correctly predicted with ARM.
The density profiler(Z)51/T(Z) has been considered for
the typical case of methane-air combustion, withZst

50.055. The errors in the prediction of the expected value
are below 20% and correlation coefficients are of the order of

FIG. 34. Predictions of the SGS part ofv(Z). Hollow symbols correspond
to exact values and solid symbols to FDF–ARM model predictions. Circles,
squares, and triangles denote filter sizes of 4, 8, and 16, respectively. Verti-
cal solid line indicates position of the stoichiometric surface,^Z&50.2.
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0.90. The Arrhenius termv(Z)5exp(2Ta /T(Z)) has been
analyzed. For a smooth case ofZst50.2 andTa /Tf510, the
results show an error below 10% for the smallest filter size,
while, for the largest filter size, these errors increase as the
remainder in the Taylor’s formula, Eq.~29!, augments, until
the order of 30%. The pointwise behavior is similar, with
correlation coefficients between exact and predicted values
of the unresolved part at the location^Z̄&5Zst above 0.90.
However, as the characteristic scaleDZ of the nonlinearity
v(Z) decreases, so does the performance of the ARM model,
as expected from the rationale behind the approach.

A LES has been performed to obtaina posterioriresults
on a grid having spacingDg

LES58Dg
DNS. The closure in the

momentum and scalar equations is done with a dynamic
mixed procedure with filter sizeD f52Dg

LES and test filter
size of 2D f . The filter in the LES approximately corresponds
to an a priori test with D f516Dg

DNS. The main difference
with respect to thea priori context is that the two physical
quantities required by the ARM model, a velocity scaleK1/2

and a time scaleZrms
2 /x, are approximated by resolved values

Kr
1/2 ~with a possible correction to estimateK! andZ̄rms

2 /xsg.
It has been shown that the behavior of the model in the LES
follows the same trends as in thea priori results, giving very
accurate predictions of subgrid-scale contributions of poly-
nomial functions and reasonable estimates of the stronger,
more localized, Arrhenius nonlinearity. It has been explained
as well that the LES must provide an accurate resolved field
in order to calculate higher nonlinearities with the ARM
method and, for this reason, a dynamic mixed model is pre-
ferred instead of a simpler dynamic Smagorinsky model.

A detailed analysis of the error involved in the ARM
method has been presented. The first source of error lies in
the assumption of isotropy of the subfilter scales and a par-
ticular scalar spectrum. This error is expected to decrease as
the Reynolds number increases, and, besides, it has been
shown that the sensitivity of the subgrid-scale variance to
errors in the model coefficient is small, about 0.25. It is
recognized that the spectral formulation is not always appli-
cable ~e.g., compressible cases or flows with inhomogene-
ities imposed on the subfilter scales, like in situations of
strong shear or the presence of gravity! and alternatives are
currently under investigation. The second source of error,
associated with using the intermediate fieldZM to compute
the subgrid part of the nonlinearityf (Z), is estimated using a
Taylor expansion off (Z). This analysis shows that the ac-
curacy of the model depends on how large is the magnitude
of the subfilter fluctuations compared toDZ, a particular
scale for each nonlinearityf (Z). Hence, the ratiol
5(Zsg

2 )1/2/DZ comes up as the controlling parameter of the
model, a ratio that varies with the filter size asg1/3, where
g5D f /2LZ . An expression to estimateDZ is given by Eq.
~38!, which can be used to choose the filter size of the LES
in order to achieve the desired accuracy in the subgrid
model. Values ofl for different nonlinearities and filter sizes
are reported in Table V.

With the aim of comparing with the ARM model, the
assumed filtered density function~FDF! approach has been
considered in thea priori context. With respect to the poly-

nomial terms, ARM is more accurate than FDF. Correlation
coefficients forY(Z)5Z4 can be compared between Table II
and Table VI. For instance, for the filter size of 16, ARM
gives a correlation of 0.89 whereas FDF yields only 0.41.
The combination FDF–ARM improves significantly the per-
formance of the FDF approach because the polynomial non-
linearities have a high sensitivity to the subfilter variance
field, and the results become similar to those of the ARM
approach. With respect to the Arrhenius nonlinearity and
density, it has been shown that for filter sizes such thatl!1
the ARM and FDF predictions are comparableif the subgrid-
scale variance for the FDF is given by the ARM. The scale
similarity model does not provide sufficiently accurate esti-
mates of the subfilter variance. This is shown through the
correlation coefficients in Table VI. For higher levels of
subgrid-scale fluctuations~larger filter sizes!, the combina-
tion of FDF with ARM gives the best performance. ARM
gives the correct spatial structure of the subgrid scalar con-
tribution, while the FDF provides the correct magnitude.
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APPENDIX A: LOCAL ANALYSIS OF THE FILTER

Consider a particular filter cellV f(x) at a fixed pointx,
which is the domain of the mappingr→G(x,r ). If we as-
sume a positive filter, then we can define an inner product by

~f,c!5E
V f

G~x,r !f~r !c* ~r !dr ~A1!

in the linear space of square-integrable functions defined
over V f(x).57 The asterisk as superscript indicates complex
conjugate. We assume that the integral ofufu2 over V f is
finite for any flow variablef~r ! at any instant of timet. The
assumption of positive filter, i.e.,G(x,r )>0 ~excluding the
zero function!, physically, is a necessary condition if we de-
sire to maintain positiveness of the filtered quantities of posi-
tive variables, like temperature, density or pressure. This in-
ner product induces theL2 norm

ifi5~f,f!1/2. ~A2!

Consider a specific nodal value,f̄(x), on the LES grid.
We takef̄(x) to be a constant value inside the associated
filter cell V f(x) to define alocal subfilter fieldby

f lsg~r !5f~r !2f̄~x!, rPV f~x! for a fixed x.
~A3!

Note that this is different from the usual one,fsg(r )5f(r )
2f̄(r ). It is straightforward to show that theL2 norm of
f lsg is just the square root of the subgrid-scale variance off
at the pointx,
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if lsgi5~fsg
2 !1/2. ~A4!

This result is the motivation to have used theL2 norm, for
the ARM model is designed to provide accurately the point-
wise instantaneous value of the subgrid-scale variance in a
LES, and this quantity isidentical to theL2 norm of the local
subfilter field inV f(x).

It is convenient to take the expected value of the previ-
ous pointwise quantity, which leads to the inequality

^if lsgi&<^fsg
2 &1/2. ~A5!

This is proved considering the probability density functions
pg(G) and ph(H) of the random variablesg5fsg

2 and h
5g1/2, respectively. Then, basic probability theory shows
that ph(H)52Hpg(H), where H<0.252 because of Eq.
~A6!, having then̂ h&<^g&. The last step iŝg&<^g&1/2 be-
causeg<1, obtaining the desired result.

A few useful relations are now derived. First, it is easy to
show that the inequality

0<fsg
2 <f̄~12f̄ ! ~A6!

always holds for a fieldf~x! satisfying 0<f<1, as it is the
case for the mixture fractionZ or the species mass fractions
Yi . In general, all we require is boundedness, for then we
can just think in terms of a normalized field; for instance, the
temperature is going to be bounded from above by the adia-
batic flame temperature, soT/Tf remains between 0 and 1.
The first part of the above inequality holds for any positive
filter, since the Cauchy–Schwarz inequality, along with the
normalization condition ofG(x,r ), yields

uf̄u2<f2 ~A7!

and the positiveness of the filter ensuresf̄.0 if f.0. The
second part follows because

0<f<1⇒f2<f⇒f2<f̄⇒f22f̄2<f̄2f̄2, ~A8!

where the positiveness ofG(x,r ) is required again in the
second implication. Hence, an upper bound to the subgrid-
scale variance is 0.25, the maximum off̄(12f̄).

Following the same reasoning, i.e.,fn<fn21<f, Eq.
~A6! can be generalized to higher order moments, obtaining

fsg
n <fsg

n211f̄n21~12f̄ !<f̄~12f̄n21!. ~A9!

This relation can be used as a constraint in any presumed
FDF model that depends onn moments.

Finally, we consider the sign of the subgrid scale part of
a nonlinearity f (f). If this function has globally non-
negative curvature,f 9(f)>0, then the inequality

f ~f!> f ~f0!1 f 8~f0!~f2f0! ~A10!

holds for anyf and f0 . If f0 is considered constant and
equal tof̄ and this equation is filtered, the order relation is
maintained by the positive filter to yield

f 9~f!>0, ;f⇒ f ~f!2 f ~f̄ !>0.

Examples considered in this paper that fall into this case are
the polynomials and the density profile of Fig. 12. Similarly,
it can be proved that iff (f) is convex, then the subgrid scale
part is negative; the typical example would be the tempera-
ture as a function of the mixture fraction. There are nonlin-
earitiesf (f) that are convex in some regions and concave in
others, for instance the Arrhenius term, displayed in Fig. 14,
or the radiation loses proportional to the fourth power of the
temperature in the optically thin regime; their subfilter part
can be either positive or negative.

APPENDIX B: RESULTS FOR OTHER FILTERS

For completeness, we consider here various filters in ad-
dition to the top-hat and calculate some results presented
previously for the top-hat. Isotropic turbulence at high Pe´clet
numbers is always assumed, in order to work with the spec-
tral formulation. The data are gathered in Table VII. First, the
amount of fluctuation energy represented by the subfilter
scales,

a5^Zsg
2 &/~Zrms

2 Ccg
2/3! ~B1!

given by Eq.~12!, is calculated, along with the recoverable
part of it, ^Zsg

2 & r , given by that same integral in the interval
@0,p#,

b5^Zsg
2 & r /^Zsg

2 &. ~B2!

Recall thatg5D f /2LZ is the normalized filter width. Second,
the ARM model coefficientc0 , Eq. ~23! and Eq.~44!, and
the sensitivityG, Eq. ~27!, are computed.

The kernel for theGaussian filter41 is

G~r !5~6/pD f
2!1/2exp~26r 2/D f

2!. ~B3!

The effect of the grid cutoff atD f ~which means a grid spac-
ing Dg5D f /2) is expressed by the spectral low-pass filter
H(p2j), where H(j) is the Heaviside function andj

TABLE VII. ARM model for different filters in the limit of high Pe´clet number under isotropic conditions:
subfilter variancê Zsg

2 & in the first column, followed by the recoverable part of it, model coefficientc0 and
sensitivityG of the modeled variance toc0 .

Filter Transfer function a b c0 G

Top-hat sinj/j 1.44 0.52 4.09 0.27
Gaussian exp(2j2/6) 1.41 0.50 4.35 0.24
Top-hat and cutoff (sinj/j)H(p2j) 1.44 0.52 4.85 0.23
Gaussian and cutoff exp(2j2/6)H(p2j) 1.41 0.50 4.49 0.24
Mid-point and cutoff 1

2(11cosj)H(p2j) 1.64 0.57 4.72 0.23

Simpson and cutoff 1
3(21cosj)H(p2j) 1.40 0.50 4.31 0.24
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5gkLZ . The last two cases represent the usual discrete ver-
sion of the top-hat, depending on the integration rule em-
ployed. Themidpoint filter is given by

G~r !51/4~d~r 1D f /2!12d~r !1d~r 2D f /2!!, ~B4!

and theSimpson filteris expressed by

G~r !51/6~d~r 1D f /2!14d~r !1d~r 2D f /2!!. ~B5!

It is worth noticing that these last two discrete filters, repre-
sented in a continuous fashion with the aid of the delta func-
tion, do not include a spectral cutoff, and this has to be
additionally imposed to represent the effect of the grid.

From the numbers of Table VII it is clear that there is
little difference among the various filters. Reconstruction al-
lows to recover about 50% of the subfilter energy for every
filter, as shown by the parameterb. The model coefficient
does not vary considerably. The mean value ofc0 is 4.5 and
all the filters have a model coefficient in a range of 4.560.4.
Note that although the spectral cutoff means less than 1% of
the subfilter energy~a is invariant in the first two decimals!,
the model coefficient feels it more because it is coupled with
the smallest resolved scales, Eq.~20!.

APPENDIX C: EFFECT OF THE MESH ON THE
A PRIORI RESULTS

The filtering operation is applied to the scalar field using
the grid from the DNS~DNS grid!, which is much finer than
the grid one would use performing a LES~LES grid!. It is
difficult to evaluate the consequence of a sharp spectral cut-
off at the wave number 2p/D f associated with the LES grid,
defined byDg5D f /2, because it is complicated to perform a
Fourier transform ofZ without homogeneity in thex direc-
tion. One alternative would be to sample the filtered field
onto the LES grid and then go back to the DNS grid if

desired using an interpolation. The aliasing error in the sam-
pling, if done after filtering, involves less than 1% of the
subgrid-scale energy, corresponding to the lobes of the top-
hat filter transfer function fork.2p/D f . This estimate is
obtained using the same kind of analysis that yields Eq.~12!.
The energy in excess in the DNS grid is

~Zrms
2 Ccg

2/3!E
p

`

~sinj/j!2j25/3dj

50.0074~Zrms
2 Ccg

2/3!, ~C1!

less than one per cent of the result in Eq.~12!.
As a consequence, results were practically the same be-

tween using the DNS grid or the LES grid. The pointwise
behavior is also similar, as shown in Fig. 35, where differ-
ences of the fieldZsg

2 in the DNS grid and the LES grid are
very small.
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