
J. Fluid Mech. (2011), vol. 681, pp. 48–79. c© Cambridge University Press 2011

doi:10.1017/jfm.2011.170

Direct and large-eddy simulations of internal tide
generation at a near-critical slope

BISHAKHDATTA GAYEN AND SUTANU SARKAR†
Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA

(Received 18 October 2010; revised 5 February 2011; accepted 1 April 2011;

first published online 25 May 2011)

A numerical study is performed to investigate nonlinear processes during internal
wave generation by the oscillation of a background barotropic tide over a sloping
bottom. The focus is on the near-critical case where the slope angle is equal to the
natural internal wave propagation angle and, consequently, there is a resonant wave
response that leads to an intense boundary flow. The resonant wave undergoes both
convective and shear instabilities that lead to turbulence with a broad range of scales
over the entire slope. A thermal bore is found during upslope flow. Spectra of the
baroclinic velocity, both inside the boundary layer and in the external region with
free wave propagation, exhibit discrete peaks at the fundamental tidal frequency,
higher harmonics of the fundamental, subharmonics and inter-harmonics in addition
to a significant continuous part. The internal wave flux and its distribution between
the fundamental and harmonics is obtained. Turbulence statistics in the boundary
layer including turbulent kinetic energy and dissipation rate are quantified. The slope
length is varied with the smaller lengths examined by direct numerical simulation
(DNS) and the larger with large-eddy simulation (LES). The peak value of the near-
bottom velocity increases with the length of the critical region of the topography. The
scaling law that is observed to link the near-bottom peak velocity to slope length is
explained by an analytical boundary-layer solution that incorporates an empirically
obtained turbulent viscosity. The slope length is also found to have a strong impact
on quantities such as the wave energy flux, wave energy spectra, turbulent kinetic
energy, turbulent production and turbulent dissipation.
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1. Introduction
Tides in the ocean interact with bottom topography to result in energetic internal

gravity waves, the so-called internal tides. It is thought that internal tides play an
important role in deep ocean mixing (Polzin et al. 1997; Munk & Wunsch 1998;
Ledwell et al. 2000; Wunsch & Ferrari 2004). The conversion to internal tides is
enhanced by sea-mounts (Lueck & Mudge 1997; Kunze & Toole 1997), submarine
ridges (Rudnick et al. 2003; Klymak et al. 2006), submarine canyons (Polzin et al.
1996; Carter & Gregg 2002), continental slope (Cacchione, Pratson & Ogston 2002;
Moum et al. 2002; Nash et al. 2004; Nash et al. 2007) and deep rough topography
(Polzin et al. 1997; St Laurent, Toole & Schmitt 2001). As part of the baroclinic
response to an oscillating flow over sloping topography shown schematically in
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Figure 1. (Colour online available at journals.cambridge.org/flm) Schematic diagram of the
near-slope energy cascade during generation of internal waves at sloping topography of angle
β . Here, Cp denotes phase velocity and Cg denotes group velocity.

figure 1, energy propagates out as internal waves while some energy is locally confined
as trapped internal wave motion and a bottom boundary layer. The locally confined
energy may cascade to small-scale turbulence owing to nonlinear effects that can
be especially large when the slope angle is near the critical value. The propagating
internal waves can also break down to turbulence at sites remote from the generation
region through a variety of mechanisms including reflection at a topographic slope
with critical angle. The case of critical and near-critical reflection of waves incident on
a slope has been studied in the laboratory, by analysis and direct numerical simulation
(DNS) of the three-dimensional Navier–Stokes equations. Laboratory studies (Ivey &
Nokes 1989; Thorpe 1992) and DNS studies (Slinn & Riley 1998; Venayagamoorthy &
Fringer 2007) of internal wave reflection find that wave/slope interactions lead to
a complex turbulent flow. Here, we investigate a different problem, that of internal
wave generation rather than internal wave reflection, using both DNS and large eddy
simulation (LES).

Generation of internal waves at sloping topography is governed by the following
physical parameters as discussed by Garrett & Kunze (2007): frequency of tidal
oscillation Ω , the buoyancy frequency N∞, the Coriolis frequency f , the topographic
height h and horizontal length l, the depth of the ocean, H , and the amplitude
of the deep-water barotropic tidal velocity U0. Two important non-dimensional
parameters are: (i) the criticality parameter, ε = tan(β)/ tan θ , which is the ratio
of the topographic slope tan(β) to the slope of internal wave characteristic
tan θ =

√
(Ω2 − f 2)/(N2

∞ − Ω2); (ii) the excursion number, Ex = U0/Ωl. The response
at harmonics of the tidal frequency increases when Ex increases. Values of Ex are
typically �1 in the ocean except for some coastal regions where the topography is
steep and the barotropic tides are strong. Topography is said to be subcritical, critical
or supercritical if ε <, = or > 1. Nonlinear effects in the wave response become
increasingly important when ε is finite and cannot be assumed to be much smaller
than unity. The case with ε = 1 is a resonant situation where viscous dissipation,
possibly in conjunction with turbulence, regularizes the near-boundary response. The
present study is restricted to near-critical slope angles with ε � 1 and low excursion
number Ex � 1. Under such circumstances, the internal wave energy that leaves the
topography is concentrated into a tidal beam as shown in figure 2, and the near-
bottom velocity is strongly intensified with respect to the barotropic tidal amplitude.
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Figure 2. Contours of the kinetic energy,E, in a case simulated to illustrate the formation of
a beamof internal waves. Normalization is with respect to the barotropic kinetic energy,Ef .

The linear theory of internal tides is well developed. A popular theoretical approach
is based on the weak topography approximation (WTA), i.e. height changes in
topography are small compared to the depth of the ocean and the topographic
slope is small relative to the slope of internal wave phase lines. Bell (1975a, b)
decomposed the topography into Fourier modes, introduced WTA, and computed
the energy conversion rate in a uniformly stratified, infinitely deep ocean by linear
superposition. St Laurent & Garrett (2002) used the analysis of Bell to deduce that
the conversion from barotropic to internal tide is significant at the Mid-Atlantic
Ridge and, under the assumption of linear theory, found that most of the internal
wave energy resides in low modes which propagate away without dissipating locally.
Llewellyn Smith & Young (2002), Balmforth, Ierley & Young (2002) and Khatiwala
(2003) further developed WTA to estimate the tidal conversion in other types of
subcritical topography while allowing for finite depth and non-uniform stratification.
Balmforth et al. (2002) performed a perturbative expansion in the parameter ε

to estimate the influence of increasing slope steepness. Their solution showed a
singularity in the solution when ε � 1. All the aforementioned theories are accurate for
small-amplitude subcritical topography. In a different approach, Baines (1974, 1982)
developed an analytical model based on ray theory and wave characteristics. This
model can deal with arbitrary topography including steep, supercritical topography
as long as the regions with ε = 1 can be approximated as isolated critical points.
Llewellyn Smith & Young (2003) revisited the problem of steep topography using a
Green’s function approach (Robinson 1969) to deal with the singularity at ε = 1. Other
studies (St Laurent et al. 2003; Pétrélis, Llewellyn Smith & Young 2006; Balmforth &
Peacock 2009) estimated the conversion rate for arbitrary-shaped topography; among
them Pétrélis et al. (2006) calculated a finite value of conversion rate at near-critical
topography although velocity and density were found to be singular. Griffiths &
Grimshaw (2007) employed a modal approach where the flow field is expanded in
terms of basis functions newly derived by the authors. The number of modes required
for a converged solution was found to be small, less than 10, for ε < 1. However,
the solution for ε � 1 contains singular beams so that finer structure is revealed with
increasing number of modes.
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Wave generation in the form of a localized beam has been studied in laboratory
experiments that consider model continental slopes (Gostiaux & Dauxois 2007;
Zhang, King & Swinney 2008; Lim, Ivey & Jones 2010) and other underwater model
topography (Echeverri et al. 2009). Zhang et al. (2008) focused on the case with
critical slope and found that the resonant wave/slope interaction led to a laminar
oscillating boundary layer with intensified bottom velocity, an order of magnitude
larger than the imposed oscillatory forcing. All the laboratory studies of internal
wave generation have been conducted at low Reynolds number (Re ∼ O(1)) with the
notable exception of Lim et al. (2010), who find beam formation, boundary-layer
turbulence and upslope propagation of bores depending on the value of the Reynolds
number.

Nonlinear ocean models have proved effective in studying internal tides in a realistic
oceanic environment. Holloway & Merrifield (1999) used the nonlinear hydrostatic
Princeton Ocean Model (POM) to demonstrate that the conversion into internal
wave energy is stronger for flow across elongated features such as ridges rather
than symmetric features such as islands and seamounts. The POM calculations
of Merrifield, Holloway & Johnston (2001) identified key generation sites at the
Hawaiian Ridge and showed multiple dynamical modes in the near field. Legg (2004)
used the Massachusetts Institute of Technology (MIT) model to perform three-
dimensional simulations of generation from a continental slope in a regime with
Ex � 1 but with steep topography including critical and supercritical regions. Along-
slope corrugations in the slope were identified as important for realizing high-mode
internal waves with potential for local mixing. Legg & Klymak (2008) performed
two-dimensional calculations of flow over a tall steep ridge and showed that, at the
top of the ridge, the intensified barotropic flow in conjunction with a large slope
angle leads to overturning events associated with transient internal hydraulic jumps.
Korobov & Lamb (2008) have examined the frequency content of the propagating
internal wave field to show the generation of subharmonics, higher harmonics and
interharmonics during tide/topography interaction.

The turbulent boundary layer on a non-sloping flat bottom under an oscillating
current has been examined in the unstratified case by simulations that resolve
turbulence. DNS studies (Spalart & Bladwin 1987; Akhavan, Kamm & Shapiro
1991; Vittori & Verzicco 1998; Costamagna, Vittori & Blondeaux 2003; Sakamoto &
Akitomo 2008) have paid attention primarily to the disturbed laminar and
intermittently turbulent flow regimes that occur at moderate values of the Reynolds
number. The LES approach has allowed studies in the fully turbulent regime. The
simulations of Salon, Armenio & Crise (2007) performed with a dynamic mixed model
agreed well with the experimental results of Jensen, Sumer & Fredsøe (1989) and
provided new insights into the phase dependence of inner- and outer-layer turbulence.
Radhakrishnan & Piomelli (2008) have performed LES with various subgrid models
and near-wall treatments to further extend the Reynolds number of the simulations.
Turbulence-resolving simulations of oceanic bottom boundary layers in a stratified
fluid are scarce. Taylor & Sarkar (2008a) examined the thermal field in a stratified
boundary layer using both DNS and LES, and Taylor & Sarkar (2008b) showed
that stratification has a significant effect on boundary-layer thickness and structure.
Broadband bottom turbulence was found to lead to internal waves which tended
to cluster around 45◦ during propagation as discussed by Taylor & Sarkar (2007).
An oscillating boundary layer in a stratified fluid was examined through LES by
Gayen, Sarkar & Taylor (2010), who found that stratification increases the asymmetry
in turbulence between accelerating and decelerating phases and also increases the
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Figure 3. Schematic diagram of the problem. Stratified fluid flows over sloping topography
as a response to oscillatory forcing, F0(td ), in the streamwise direction.

height-dependent lag in the phase of maximum turbulent kinetic energy with respect
to the peak free-stream velocity. Li et al. (2010) employed LES to study an estuarine
tidal boundary layer where the horizontal density gradient associated with salinity is
found to introduce a strong ebb–flood asymmetry in the turbulence.

Since all the theoretical investigations of internal tide generation are based on
linear analysis, they cannot study the evolution of flow instabilities into turbulence.
Previous numerical models of internal tide generation have proved useful for studying
some nonlinear aspects of the generation problem but the relatively coarse resolution
and high values of viscosity in these simulations preclude resolution of turbulence
dynamics. Recently, Gayen & Sarkar (2010) performed a three-dimensional DNS
of generation by a laboratory-scale slope in the regime of Ex � 1 and ε � 1 that
shows transition to turbulence along the entire slope. The transition is found to be
initiated by a convective instability which is closely followed by shear instability. The
present simulations extend the work of Gayen & Sarkar (2010) by examining internal
wave energetics as well as the energetics of turbulence in the bottom boundary layer.
In addition, the effect of increasing slope length, l, is quantified by employing an
LES approach to access higher values of l. The present work also extends previous
DNS/LES of bottom turbulence from the case of tidal flow over a non-sloping bottom
to the situation with a sloping bottom where the baroclinic wave velocity dominates
the barotropic tidal velocity.

2. Formulation of the problem
The near-bottom flow resulting from a current oscillating on an inclined surface is

illustrated in figure 3. The bottom is adiabatic while there is a background thermal
stratification with constant buoyancy frequency, N∞. The flow is forced by an imposed
pressure gradient,

F0(td) = ρ0U0Ω cos(Ωtd), (2.1)
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in the horizontal direction that results in a background barotropic current, U (x) sin(φ),
where φ is the tidal phase. In the figure, coordinates x, y and z denote the horizontal,
spanwise and vertical directions and u, v and w are the corresponding velocity
components, while ξ , ζ and η are curvilinear coordinates employed in the simulation.

2.1. Governing equations

The Navier–Stokes equations, under the Boussinesq approximation, which are
numerically solved here are written as follows with dimensional form denoted by
subscript d:

∇ · ud = 0, (2.2a)

Dud

Dtd
= − 1

ρ0

∇p∗
d +

F0(td)

ρ0

i + ν∇2ud − gρ∗
d

ρ0

k − ∇ · τ d, (2.2b)

Dρd

Dtd
= κ∇2ρd − ∇ · λd . (2.2c)

Rotation is not included, for simplicity. Here, p∗
d denotes deviation from the

background hydrostatic pressure and ρ∗
d denotes the deviation from the linear

background state, ρb
d (zd). In the LES mode, ud and ρd are to be interpreted in

the equations as filtered quantities, i.e. we drop the overbar conventionally used to
denote filtering. Here τ d and λd which are the subgrid-scale (SGS) stress tensor and
density flux vector, respectively, require models for closure in LES. In DNS cases,
τ d and λd are zero. An evolution equation for ρ∗

d , the deviation from the linear
background state ρb

d (zd), is written as

Dρ∗
d

Dtd
= κ∇2ρ∗

d − wd

dρb
d

dzd

− ∇ · λd . (2.3)

The dimensional quantities in the problem are the free-stream velocity amplitude U0,
tidal frequency Ω , background density gradient dρb

d/dzd |∞, and the fluid properties:
molecular viscosity, ν, thermal diffusivity, κ , and density, ρ.

We numerically solve the dimensional equations (2.2a), (2.2b) and (2.3).
Nevertheless, it is useful to examine the non-dimensional equation. The variables
in the problem are non-dimensionalized as follows:

t = tdΩ, x = (x, y, z) =
(xd, yd, zd)

U0/Ω
, p∗ =

p∗
d

ρoU 2
o

,

u = (u, v, w) =
(ud, vd, wd)

U0

, ρ∗ =
ρ∗

d

−U0

Ω

dρb
d

dzd

∣∣∣∣
∞

.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.4)

The resulting non-dimensional form of the governing equations is

∇ · u = 0, (2.5a)

Du
Dt

= −∇p∗ + cos(t)i +
1

Re
∇2u − Bρ∗k − ∇ · τ , (2.5b)

Dρ∗

Dt
=

1

Re P r
∇2ρ∗ + w − ∇ · λ. (2.5c)
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The governing equations have three non-dimensional parameters: Reynolds number
Re, Buoyancy parameter B , and Prandtl number Pr , where

Re ≡ aU0

ν
=

U 2
0

Ων
, B ≡ −g

dρb
d

dzd

∣∣∣∣
∞

1

ρ0Ω2
=

N2
∞

Ω2
, P r ≡ ν

κ
. (2.6)

Here, a = U0/Ω is the tidal excursion length and N∞ is the background value of
buoyancy frequency assumed constant. The following Reynolds number,

Res =
U0δs

ν
=

√
2Re, (2.7)

based on the Stokes boundary-layer thickness, δs =
√

2ν/Ω , is a commonly used
alternative to Re. We employ Res rather than Reδ to denote the Stokes–Reynolds
number since, in geophysical boundary layers, the latter expression is often used
for definitions involving the friction velocity. The slope geometry is given by the
slope angle, β , and the slope length in the x-direction, l. The angle of the internal
wave phase lines with the horizontal is given in a non-rotating environment by
θ = tan−1

√
Ω2/(N2

∞ − Ω2). Thus, in addition to those listed in (2.6), there are three
other non-dimensional parameters: the excursion parameter Ex = U0/(lΩ), the slope
angle β and the slope criticality parameter, ε = tan(β)/ tan(θ).

The Navier–Stokes equations are written in the following coordinates:

ξ = ξ (x, z), η = η(x, z), ζ = ζ (y), (2.8)

where, at the slope, ξ points parallel to and across the slope while η is normal to the
slope as shown in figure 3. Now (2.5) is transformed as described by Fletcher (1991)
to the form of a strong conservation law as

∂Uc
j

∂ξj

= 0, (2.9a)

∂(J −1ui)

∂t
+

∂Fij

∂ξj

= J −1 cos(t)δ1i − J −1Bρ∗δ3i , (2.9b)

∂(J −1ρ∗)

∂t
+

∂Hj

∂ξj

= J −1w, (2.9c)

where the fluxes are

Fij = Uc
j ui + J −1 ∂ξj

∂xi

p∗ − 1

Re
Gjm ∂ui

∂ξm

+ J −1 ∂ξj

∂xm

τim, (2.10)

Hj = Uc
j ρ

∗ − 1

Re P r
Gjm ∂ρ∗

∂ξm

+ J −1 ∂ξj

∂xm

λm. (2.11)

Here J −1, the inverse of the determinant of the Jacobian, is the volume of the cell
in physical space, Uc

j is the volume flux (contravariant velocity multiplied by J −1)

normal to the surface of constant ξj and Gjm is called the ‘mesh skewness tensor’.
These quantities are

Uc
j = J −1 ∂ξj

∂xi

ui, (2.12)

J = det

(
∂ξj

∂xi

)
, (2.13)

Gjm = J −1 ∂ξj

∂xn

∂ξm

∂xn

. (2.14)

Here, repeated indices represent implied summation.
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2.2. Numerical method

Boundary conforming grid generation based on transfinite interpolation (TFI) has
been used. In this method, the domain boundary points are specified through four
sets of parametric equations,

xb(ξ ), x t (ξ ), 0 � ξ � 1, (2.15a)

xl(η), xr (η), 0 � η � 1. (2.15b)

Here subscripts b, t , l and r of x = [x, z] denote bottom, top, left and right boundaries,
respectively. The interior grid is created from knowledge of the boundary points by
using the TFI technique as follows:

x(ξ, η) = (1 − η)xb(ξ ) + ηx t (ξ ) + (1 − ξ )x l(η) + ξ xr (η)

− ξηx t (1) − ξ (1 − η)xb(1) − η(1 − ξ )x t (0)

− (1 − ξ )(1 − η)xb(0). (2.16)

After grid generation by the TFI method, the grid is non-orthogonal. However, at the
bottom boundary conforming to the topography, an orthogonal grid is convenient to
impose accurately the condition of zero-normal heat flux. So points on the two rows of
points just above the bottom boundary are shifted sideways to make the η coordinate
lines perpendicular to the ξ coordinate lines at the boundary. This simple process
ensures grid orthogonality at the bottom boundary. The physical domain boundaries
at top, left and right are such that grids are orthogonal at those boundaries.

The simulations use a mixed spectral/finite-difference algorithm. Derivatives in the
spanwise direction are treated with a pseudo-spectral method and derivatives in the
vertical and streamwise directions are computed with second-order finite differences.
A low-storage third-order Runge–Kutta–Wray method is used for time stepping,
except for the viscous terms which are treated implicitly with the alternating direction
implicit (ADI) method. The eddy viscosity and diffusivity coefficients, νT and κT

defined later by (2.21) and (2.22), are computed using current values of velocity
and temperature. The subgrid eddy fluxes involving νT and κT are included in the
time advance with the ADI method. Variable time stepping with a fixed Courant–
Friedrichs–Lewy (CFL) number 0.5 is used. Time steps are of the order of 10−3. One
tidal cycle takes approximately 70–90 CPU h.

2.3. Pressure Poisson equation

The fractional step method used here leads to the following Poisson equation for the
pressure correction,

∂

∂ξi

(
Gij ∂φn+1

∂ξj

)
=

∂U
c(n)
j

∂ξj

. (2.17)

Here U
c(n)
j = J −1(∂ξj/∂xi)u

(n)
i is an intermediate volume flux and superscripts n, n + 1

denote current and advanced time level. Finally, velocity and pressure are corrected
as

U
c(n+1)
j = U

c(n)
j − Gjm ∂φn+1

∂ξm

, (2.18)

p∗(n+1) = p∗(n) + C1φ
n+1. (2.19)

Here C1 is a factor that depends on the time step in the Runge–Kutta substep.
Equation (2.17) is solved by a two-dimensional multigrid method developed by
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Zeeuw (1990) and based on sawtooth multigrid cycling (i.e. one smoothing sweep after
each coarse grid correction) with smoothing by incomplete line LU decomposition,
weighted nine-point prolongation and restriction, and Galerkin approximation of
coarse grid matrices.

2.4. Boundary condition

Periodicity is imposed in the spanwise (ζ = ζ (y)) direction on velocity, density ρ∗ and
pressure, p∗.

The bottom boundary, η = 0, has zero velocity and zero temperature gradient. Grids
are forced to be orthogonal near the boundary so that

∂ρ

∂η
= 0 ⇒ ∂ρ∗

∂η
= cos(β) at η = 0 , (2.20)

where β = tan−1(hx). At the top of the domain, ∂u/∂η = 0, v, w = 0 and ρ∗ = 0. On
the left and right sides, ∂u/∂ξ =0, v, w = 0 and ρ∗ = 0. To match the boundary
condition for the density deviation, ρ∗, between the left and the bottom (similarly,
the right and the bottom) boundaries, ∂ρ∗/∂η is set to zero on both the left and
right ends of the bottom boundary, then it gradually reaches the value given by
(2.20) within 1 m from the both ends and it is fixed at this value for the remaining
extent of the bottom boundary. The pressure boundary conditions are ∂p∗/∂η = 0
at the bottom and top walls and p∗ = 0 on the left and right of the computational
domain.

Rayleigh damping or a ‘sponge’ layer is used on the left, right and top boundaries
of the computational domain as shown in figure 4 so as to minimize spurious
reflections from the artificial boundary into the ‘test’ section of the computational
domain. The velocity and scalar fields are relaxed towards the background state in
the sponge region by adding damping functions −σ (ξ, η)[ui(x, t) − 0] (i = 2, 3) and
−σ (ξ, η)[ρ∗(x, t) − 0] to the right-hand side of the momentum and scalar equations,
respectively. The value of σ (ξ, η) is zero everywhere except in a region close to the top,
left and right boundaries where it increases exponentially and reaches a maximum
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value corresponding to 2σ (ξ, η)�t ∼ O(1) where �t is the time step of the simulation.
Since �t ∼ O(10−3), it follows that σ (ξ, η) ∼ O(500).

2.5. Subgrid-scale model

The dynamic eddy-viscosity model (Zang, Street & Koseff 1993; Vreman, Geurts &
Kuerten 1997) is used for the SGS stress tensor, τ . The SGS heat flux, λ, is obtained
using a dynamic eddy-diffusivity model (Armenio & Sarkar 2002). The expressions
for the SGS models are as follows:

τij = −2νT Sij , νT = C∆
2|S| (2.21)

and

λj = −κT

∂ρ∗

∂xj

, κT = Cρ∗∆
2|S| . (2.22)

Here, C and Cρ∗ are the Smagorinsky coefficients evaluated through a dynamic
procedure introduced by Germano et al. (1991). Averaging over the spanwise direction
is employed to prevent excessive back scattering owing to large local fluctuations.
The dynamic procedure involves the introduction of an additional test filter denoted

by (̂·). The model coefficient, C, in the SGS stress model is given by

C =
〈MijLij 〉
〈MklMkl〉

, (2.23)

where

Lij = ûiuj − ûi ûj , Mij = 2
̂

∆
2|S|Sij − 2∆̂

2

|Ŝ|Ŝij , (2.24)

The model coefficient, Cρ∗ , in the SGS heat-flux model is given by

Cρ∗ =
〈Mρ∗

i L
ρ∗

i 〉
〈Mρ∗

j M
ρ∗

j 〉
, (2.25)

where

L
ρ∗

i = ρ̂∗ui − ρ̂∗ûi , M
ρ∗

i = 2
̂

∆
2|S|∂ρ∗

∂xi

− 2∆̂
2

|̂S|∂ρ̂∗

∂xi

. (2.26)

The test filter, denoted by (̂·), and the grid filter, denoted by (·), are applied over only
the spanwise direction using a trapezoidal interpolation rule. For instance, application
of the explicit filters to an LES variable, Ψ i , at node i is given by

Ψ̂ i = 1
4

[
Ψ i−1 + 2Ψ i + Ψ i+1

]
, (2.27)

Ψ i = 1
8

[
Ψ i−1 + 6Ψ i + Ψ i+1

]
. (2.28)

The filter width ratio ∆̂/∆ is taken as
√

6, recommended by Lund (1997) to be the
optimal choice for filters evaluated using the trapezoidal rule.

2.6. Domain resolution and initialization

The computational domain length in the horizontal directions is given by lx and ly .
The vertical domain length is lz. Five different numerical experiments are performed
in a parametric study on the influence of slope length, l, as shown in tables 1–2.
Cases 1 and 2 are DNS with �x+

min � 20, �y+ � 10 and �z+
min � 2 in terms of the

viscous wall unit ν/uτ . Cases 3–5 correspond to a resolved-LES mode with a dynamic
eddy-viscosity model.
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Case U0 (m s−1) N 2
∞ (s−2) Ω2 (s−2) ν (m2 s−1) l (m) lx (m) ly (m) lz (m) Remark

1 0.125 131.6 1.0 10−6 1.7 !8 1 3 DNS
2 0.125 131.6 1.0 10−6 3.5 10 1 3 DNS
3 0.125 131.6 1.0 10−6 7.2 15 1 3 LES
4 0.125 131.6 1.0 10−6 12.0 30 1 3.5 LES
5 0.125 131.6 1.0 10−6 25.0 60 1 5.5 LES

Table 1. Dimensional parameters of the simulated cases.

Case Res

Ω2

N 2
∞

Pr Ex = U0/Ωl ε Nx Ny Nz �x+
min �y+ �z+

min

1 177 0.0076 1.0 0.0735 1.0 260 256 260 15 7.5 1.4
2 177 0.0076 1.0 0.0357 1.0 260 256 260 20 10 2.0
3 177 0.0076 1.0 0.01736 1.0 260 256 260 40 25 2.3
4 177 0.0076 1.0 0.0104 1.0 800 256 260 60 50 2.6
5 177 0.0076 1.0 0.005 1.0 600 256 260 100 60 3.0

Table 2. Non-dimensional parameters and grid resolution of the simulated cases. The excursion
number is chosen to be small, as is typical for deep water topography, and the slope angle is
critical.

The flow is statistically homogeneous in the spanwise direction and a y-average is
used to compute the time-dependent mean, 〈A〉y(x, z, t), as follows:

〈A〉y(x, z, t) =
1

ly

∫ ly

0

A(x, y, z, t) dy. (2.29)

2.7. Selection of simulated cases

Table 1 gives the dimensional parameters of the simulations. The non-dimensional
parameters in table 2 show that each case is near-critical (ε ∼ 1) and has a low
excursion number. These non-dimensional parameters can be compared with an
oceanic example of tidal flow over sloping topography in deep water: a tidal amplitude
of U0 = 0.025 m s−1, a tidal frequency of Ω = 1.4 × 10−4 rad s−1 corresponding to
the M2 tidal period of 12.4 h, a low latitude with f = 3.5 × 10−5 rad s−1, and
N∞ = 1 cph = 1.74 × 10−3 rad s−1. A representative slope length of 5 km leads to an
excursion number of 0.04. In the simulations, Ex is below this value, except in case 1
where Ex =0.0735. The critical slope angle β = 5◦ is in the range β =4◦–5◦, typical of
the ocean. The Stokes–Reynolds number, Res = 177, of the simulated cases is smaller
than the value of Res =2975 in the oceanic example but still sufficiently large in
the case of critical slope to exhibit turbulence, owing to a substantial increase in
near-bottom velocity, as will be demonstrated. Note that dimensional variables are
solved. However, for simplicity of notation, we will drop subscript d when presenting
results in the following section.

3. Velocity field
The baroclinic response at a near-critical slope results in intensification of the

near-bottom velocity. In the following discussion, ‘across-slope’ velocity denoted by
Usl refers to the slope-parallel velocity pointing in the ξ -direction.

The time evolution of the across-slope velocity at a point Q, adjacent to the
slope midpoint, is shown in figure 5(a). As this location is very close to the slope,
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Figure 5. (Colour online) Time evolution of (a) the along-slope velocity Usl and (b) the
magnitude of friction velocity |uτ |, at a particular location which is inside the boundary layer
at the midpoint of the slope denoted by point Q in the inset of figure 4 for different cases. (c)
Viscous dissipation calculated as an average over the region Γ in the inset in figure 4.

the mean flow velocity is predominantly parallel to the slope of the topography.
Initially, the amplitude of the near-bottom velocity increases rapidly with time due
to resonant buoyant forcing. Nonlinear effects become important and there is a
transition to turbulence as discussed by Gayen & Sarkar (2010). Shortly after, viscous
dissipation becomes important and leads to amplitude saturation. After a couple
of initial cycles, the flow field achieves a quasi-steady state where the variation of
the velocity amplitude is slight. By increasing the slope length, the resonance area
increases, resulting in enhancement of the baroclinic tidal velocity response in case 5
(l =25 m) relative to case 1 (l =1.7 m). However, longer slopes require more time
to adjust between the higher resonant forcing and frictional force before reaching a
quasi-steady state. Here, case 5 requires five tidal cycles compared to three and two
cycles for the smaller domains in cases 3 and 1, respectively.



60 B. Gayen and S. Sarkar

Case uτ,max uτ,avg cf,max cf,avg

τw,max

(1/2)ρ0U
2
sl,max

1 0.010 0.0077 0.0128 0.0076 0.00320
2 0.012 0.0090 0.0184 0.0103 0.00180
3 0.015 0.0104 0.0284 0.0138 0.00148
4 0.023 0.0119 0.0504 0.0181 0.00122
5 0.025 0.0130 0.0556 0.0202 0.00118

Table 3. Comparison of the overall boundary properties between cases. Here, uτ is the friction
velocity calculated based on the wall friction, τw , and cf is the friction coefficient. The subscript
avg denotes an average over at least five complete tidal cycles and max denotes the amplitude
of the oscillatory wall stress, calculated as an average of the peak values of the cycle.

Two measures of frictional effects are shown: (i) frictional velocity uτ at point Q in
figure 5(b) and (ii) viscous dissipation 〈ε〉xyz(t), calculated as an average over an area
Γ adjacent to the slope, in figure 5(c). Here, the friction velocity is calculated based
on the wall friction, τw ,

uτ =

√
τw

ρ0

, τw = ρ0ν

[(
∂〈w〉y

∂x

)2

+

(
∂〈u〉y

∂z

)2

+

(
∂〈v〉y

∂x

)2

+

(
∂〈v〉y

∂z

)2
]1/2

at bottom

.

(3.1)

The term
〈ε〉xyz(t) = ν

〈
∂ui

∂xj

∂ui

∂xj

〉
xyz

(3.2)

is viscous dissipation (more accurately pseudo-dissipation) and includes both mean
and turbulent velocities. Both quantities exhibit a rapid increase during an initial
transient followed by an approximately quasi-steady stage.

Time-averaged quantities for different cases are calculated based on quasi-steady-
state data. Temporally averaged amplitude and time-averaged frictional velocity for
different cases are tabulated in table 3. Both statistics increase monotonically with
slope length. The friction coefficients based on average wall friction and maximum
wall friction velocity are calculated by

cf,avg =
u2

τ,avg

(1/2)U 2
0

, cf,max =
u2

τ,max

(1/2)U 2
0

, (3.3)

and also exhibit an increase with increasing slope length. If Usl,max is chosen to
calculate friction factor instead of U0, its behaviour shows a reverse trend of a
decrease with increasing slope length. In this context, it is worth noting that the local
Reynolds number increases with slope length. Therefore, the reverse trend is similar
to the well-known decrease in the value of cf with increasing Re in a turbulent flow.

Profiles of Usl(zp, φ) are shown in figures 6(a) and 6(b) at φ =0◦ and φ =180◦,
respectively. In all cases, velocities in the bottom boundary layer are significantly
larger compared to the external (barotropic) current. There is a 90◦ phase lead of the
baroclinic response with respect to the barotropic current. Velocity profiles become
fuller with increasing slope length. The velocity profile has a spatial oscillation that
is associated with internal wave modes. Figure 6(c) shows non-dimensional velocity
profiles during maximal upslope flow using the following quantities for normalization:
the maximal amplitude, Umax

sl , over the velocity profile and the beam width, lb, defined
as the distance from the bottom of the profile in figure 6(a) up to the height where
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Figure 6. (Colour online) Profiles of velocity as a function of the wall-normal distance at the
midpoint of the slope for (a) φ = 0◦ and (b) φ = 180◦. (c) Profiles at φ = 0◦ replotted after
normalization with the maximal velocity amplitude, Umax

sl , and the beam width, lb .
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Figure 7. (Colour online) (a) Amplitude of the along-slope velocity as a function of the slope
length. The inset is a replot of the data in log–log scale along with a linear least-squares fit.
(b) Turbulent viscosity normalized by molecular viscosity is shown as a function of the slope
length. The inset is a replot in log–log scale.

the velocity is 15% of Umax
sl . The profiles for the different cases tend to collapse into

a single curve.
The maximal velocity amplitude, Umax

sl , increases with slope length as shown in
figure 7(a). The maximal downslope velocity amplitude is somewhat larger than the
corresponding upslope value for all cases. In the inset of figure 7(a), Umax

sl is shown
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Figure 8. (Colour online) Jet width, lb , as a function of the horizontal slope length is shown
for both upslope and downslope boundary flows. Inset shows data replotted in log–log scale
along with its linear least-squares fit.

as a function of slope length in a log–log plot. The linear fit in the inset shows that
Umax

sl � l0.45. In an earlier experiment, Zhang et al. (2008) found a different scaling law
of Umax

sl � l2/3 in the regime of laminar flow. Zhang et al. (2008) were able to provide
theoretical justification based on an analytical result obtained by Dauxois & Young
(1999) for a laminar oscillatory boundary layer:

Umax
sl

U0

∼ Ω

N∞

[√
N2

∞ − Ω2

ν

]1/3

l2/3. (3.4)

As a first approximation, the analysis can be extended to turbulent flow by replacing
ν in (3.4) by νtot = ν + νT and νT = −〈u′w′〉/d〈u〉/dz taken to be independent of z.
The height-averaged value of νT is calculated at midslope from the simulation data
and plotted in figure 7(b) to find the dependence of νT on slope length. In the inset
of figure 7(b), νT /ν is replotted as a function of the slope length in log–log scale and
the linear fit suggests that νT scales as l0.55. Therefore, (3.4) extended to the turbulent
regime becomes

Umax
sl

U0

∼ Ω

N∞

[√
N2

∞ − Ω2

νT + ν

]1/3

l2/3

⇒ Umax
sl

U0

∼ Ω

N∞

[√
N2

∞ − Ω2

νT

]1/3

l2/3 as νT > 10ν

⇒ Umax
sl

U0

∼ Ω

N∞

[
N2

∞ − Ω2

]1/6

l0.48.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(3.5)

The dependence on l in (3.5) is quite close to the relation, Umax
sl ∼ l0.45, inferred

previously by a direct fit to the simulation data.
The beam width, lb, plotted in figure 8 exhibits a monotonic increase with increasing

slope length. The beam width in the case of the upslope flow is larger than in the
downslope flow for all five cases. The inset in the figure shows power-law fits to the
dependence of beam width on slope length.
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The full velocity field computed in the simulation can be decomposed as

u(x, t) = uba(x, z, t) + ubc(x, t), (3.6)

where uba and ubc(x, t) are respectively barotropic and baroclinic responses. The
decomposition of the velocity is based on Nash et al. (2004, 2006), as further discussed
in the Appendix. The baroclinic velocity ubc(x, t) is further decomposed into a
mean wave velocity 〈ubc〉y(x, z, t) obtained by a spanwise average, and a turbulent
fluctuation u′(x, t) with respect to the mean.

The baroclinic streamwise velocity can be approximated by a sinusoidal form

〈ubc〉y(x, z, t) = u0(x, z) sin(Ωt + �φu(x, z)) (3.7)

with a space-dependent amplitude u0(x, z) and the space-dependent phase, �φu(x, z),
with respect to the background barotropic tidal flow. The parameters u0(x, z) and
�φu(x, z), determined by a least-squares method from the time series data taken over
six cycles, are shown in figures 9(a) and 9(b), respectively, for case 4. The amplitude
distribution illustrates internal wave beam strength and spatial structure. The region
with high amplitude adjacent to the slope corresponds to a narrow and strong internal
wave beam. The amplitude increases to ∼0.81m s−1 at the slope and remains relatively
constant at the slope. When the beam travels away from its generation zone (along
the slope) into the fluid, it gradually widens and weakens. At a particular position
in the centre of the beam, 1 m away from the right edge of the topography slope,
the amplitude decreases to 0.45 m s−1. The spreading of the wave beam is caused by
viscous diffusion and also by dispersion since waves with smaller wavelength and,
therefore, lower phase velocity may be locally dissipated, leaving larger wavelength
modes in the propagating wave. The spreading of the wave beam is also observed
in observations at Kaena Ridge, Hawaii, by Nash et al. (2006) and from a model
topography in a laboratory experiment by Echeverri et al. (2009).

Figure 9(b) shows that the oscillatory velocity exhibits significant spatial variability
in the phase, φ, with respect to the barotropic tidal velocity. There is phase variation
along the sloping boundary associated with internal wave propagation. As shown in
§ 5, the internal wave flux associated with the beam is such that the energy propagation
is outward from the sloping topography. There is also an area of recirculation between
the lower edge of the beam and the flat top of the topography. Other simulated cases
also show similar spatial variability of phase and amplitude.

4. Thermal bore
The baroclinic wave response is intensified at a region of critical slope and leads to

energy concentration into a beam as discussed in the previous section. An upslope-
moving tidal bore or bolus may also form, as observed by Lim et al. (2010) in
laboratory experiments of internal tide generation. In the problem of reflection at a
critical slope, the upslope propagation of a thermal front has been observed in the
laboratory (Thorpe 1992), and the upslope propagation of a bolus and on to the shelf
has been identified in simulations (Venayagamoorthy & Fringer 2007). In the present
simulations of the generation problem, we find that an upslope bore results as a part
of the baroclinic response. The thermal front has sufficient energy to move rightwards
as a gravity current along the top horizontal portion of the topography into the stable
stratified region. Using a three-dimensional visualization of a density iso-surface, the
on-slope propagation of the thermal front is shown in figure 10. The thermal front is
unstable and undergoes spanwise corrugations as shown in figure 10(b). This is similar
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to the classical lobe and cleft instability found in the case of gravity currents. Finally,
isolated fluid patches detach from the on-slope-propagating turbulent bore/bolus as
shown in figure 10(c, d ) and dissipate locally due to the combined effect of turbulent
and molecular diffusions.

5. Wave energetics
A complex wave pattern containing an energetic beam and internal waves with a

wide range of phase angles emerges as shown by Gayen & Sarkar (2010). Here, we
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Figure 11. (Colour online) (a) Power spectra, Y , based on the time-series data of the baroclinic
streamwise velocity at a location midway on the slope (point Q in the inset of figure 4) and
inside the boundary layer for cases 1 and 3. The time series is taken over eight cycles and the
spectra are averaged over the spanwise direction. The line average of the power spectra, 〈Y 〉z,
is shown in (b). The dashed vertical line corresponds to the normalized buoyancy frequency.

quantify the energy transport including the contribution of higher harmonics relative
to the fundamental, i.e. the frequency of the barotropic tidal forcing.

The baroclinic streamwise velocity field over an area containing the slope of the
topography is subjected to spectral analysis. In figure 11(a), the power spectrum at a
location Q, midway on the slope and close to the bottom, is shown for cases 1 and 3.
The spectra show energy at several temporal harmonics (nΩ, n ∈ �), subharmonics
ω ∈ [0, Ω) and interharmonics (ωα + nΩ, ωα ∈ [0, Ω)). In figure 11(a), the discrete
spectral peak at the barotropic tidal frequency, Ω , corresponds to an energetic
linear response which, in physical space, corresponds to the strong beam parallel to
the slope in figure 2. The spectrum shows discrete peaks at the second and third
harmonics as well as significant strength at frequencies ω > N∞. The energy content
at harmonics, interharmonics and subharmonics is higher for larger slope lengths.
Significantly, larger amplitude of the continuous part of the spectrum (especially at
high frequencies) is observed at the longer slope length of case 3 relative to case 1. The
continuous spectrum is associated with nonlinear interactions and, at high frequencies,
reflects the broadband multiscale nature of turbulence. With increasing slope length,
turbulence (quantified in the next section) is enhanced due to the increase in the
boundary velocity. Therefore, the relative magnitude of the continuous spectrum
increases with increasing slope length. The power spectra averaged over a vertical line
at location Q, defined in the inset of figure 4, are shown in figure 11(b) for both cases.
The line extends from bottom of the wall to the height of the control area Γ so that the
averaging procedure includes points both inside and outside the boundary layer.
The discrete peaks at the higher harmonics and the interharmonics are also present
in the averaged spectrum.

To illustrate the shift from turbulence inside the boundary layer to internal waves
propagating outside, we choose three locations (a–c) at different heights on a vertical
line at point Q midway on the slope. Position (a) (height with respect to the bottom,
z∗ = 0.01 m) is well inside the boundary layer, position (b) (z∗ =0.15 m) is outside
the boundary layer and position (c) (z∗ =0.4 m) is well outside. Power spectra of
the baroclinic velocity field at those locations are shown in figure 12(a). For all
positions, the global spectral peak occurs at the fundamental tidal frequency. Because
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Figure 12. (Colour online) (a) Power spectra of the baroclinic velocity field at locations (a),
(b) and (c) along a vertical line at point Q in the inset of figure 4 for case 1. The time series is
taken over eight cycles. (b) Profile of buoyancy flux, pressure transport and turbulent transport
as a function height above the bottom at location Q. Data are taken at φ = 0◦.

of strong turbulence activity, position (a) located inside the boundary layer has
a continuous spectrum of significant magnitude that obscures discrete peaks at
harmonics of the tidal frequency. Positions (b) and (c) are external to the boundary
layer and are locations with little turbulence. Nevertheless, there is a significant
continuous spectrum. Boundary-layer turbulence on a non-sloping bottom generates
an externally propagating wave field without discrete peaks, as shown in our previous
work on a steady boundary layer (Taylor & Sarkar 2007) and an oscillating boundary
layer (Gayen et al. 2010). Such turbulence-generated waves and, in addition, wave–
wave interactions of the topography-generated waves lead to a continuous spectrum
at points (b) and (c) in the present problem. It is worth noting that there is a
sharp decay in the amplitude of frequencies larger than the buoyancy frequency,
N∞, at points (b) and (c) since the background does not support freely propagating
waves with ω > N∞. Also, at locations (b) and (c) the peaks at the tidal harmonics
increase in strength relative to the continuous part of the spectrum. This is probably
because the continuous spectrum is associated with smaller length-scale waves that
suffer higher viscous dissipation. Profiles of buoyancy flux, pressure transport and
turbulent transport are plotted in figure 12(b) at maximal upslope flow. The location
of observation points (b) and (c) are shown in the same figure by dashed horizontal
lines. At these locations, buoyancy flux and pressure transport dominate. Turbulent
production and dissipation as well as turbulent transport are insignificant, confirming
that there is little contribution of turbulence to fluctuations at points (b) and (c).

A comparative study of energy distribution among the harmonics is performed
for different slope lengths. In figure 13(a), the line-averaged energy, 〈Y 〉z, is shown
for the first three harmonics. For all cases, the fundamental dominates. The energy
content at the higher harmonics decreases with increasing frequency. The energy at
all harmonics increases with the slope length. The relative importance of the energy at
higher harmonics with respect to the fundamental is shown as a function of the slope
length in figure 13(b). For each case, the fundamental is assigned as 100% and the
energy in other harmonics is expressed as a relative percentage. Energy contained in
higher harmonics relative to the fundamental increases with increasing slope length.
For example, the energy of the second harmonic in case 1 with slope length 1.7 m is
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2
0 Γ .

10% of the energy at the fundamental, a value that increases to 15% for the largest
slope length of 25 m in case 5.

The energy density, EIW , in the internal wave field is decomposed into kinetic
energy, Ek , and potential energy, Ep , as follows:

Ek = 1
2
ρ0

(
〈ubc〉2

y + 〈vbc〉2
y + 〈wbc〉2

y

)
, (5.1)

Ep =
g2〈ρbc〉2

y

2ρ0N2
∞

. (5.2)

We choose an area Γ containing the topography and a time record of length nT ,
where T is the time period of a tidal cycle and n= 5. The energies in this space–time
section are normalized as follows:

〈Ek〉 =
1

nT Γ U 2
0

∫
nT

∫
Γ

(
〈ubc〉2

y + 〈vbc〉2
y + 〈wbc〉2

y

)
dA dt, (5.3)

〈Ep〉 =
1

nT Γ U 2
0

∫
nT

∫
Γ

g2〈ρbc〉2
y

ρ2
0N

2
∞

dA dt. (5.4)

The values of 〈Ek〉 and 〈Ep〉 for different cases are shown in figure 14. In most
cases, the kinetic energy is greater than the potential energy. In a linear plane wave,
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energy is equipartitioned between the kinetic and potential modes. In more general
situations, there can be deviations from linear theory as in the viscous, nonlinear
waves simulated in the present work.

Streamwise and vertical wave fluxes are defined by f ‖ = 〈pbcubc〉y and
f ⊥ = 〈pbcwbc〉y , respectively. Here pbc is the pressure anomaly calculated in the
Appendix. Now spanwise-averaged total energy equation for a plane internal wave
can be written in linearized form

∂(Ek + Ep)

∂t
+ U (x) sin(Ωt)

∂(Ek + Ep)

∂x
= −∂f ‖

∂x
− ∂f ⊥

∂z
+ q(x, z), (5.5)

where q(x, z) is a source (sink) term. Equation (5.5) is integrated over the area Γ to
give

∂

∂t

∫
Γ

[Ek + Ep] dA = −
∫

Γ

[
U (x) sin(Ωt)

∂Ek + Ep

∂x

]
dA

−
[∫ z2

h(x2)

f ‖|x2
−

∫ z2

h(x1)

f ‖|x1

]
dz −

∫ x2

x1

f ⊥|z2
dx

+

∫
Γ

q(x, z) dA. (5.6)

The integration area Γ is bounded on the top by the line z = z2, on the left by x = x1,
on the right by x = x2 and z = h(x) on the bottom. After averaging (5.6) over a time
span of length nT , where n= 5, transient terms vanish and it gives

0 = 〈G〉 − 〈F 〉‖ − 〈F 〉⊥ + 〈Q〉, (5.7)

where the cycle-averaged net horizontal flux, 〈F 〉‖ (the sum of the outward fluxes on
the left and right boundaries of the integration area Γ ), and the net vertical flux,
〈F 〉⊥ (the outward fluxes on the top boundary of the integration area Γ ) are defined
respectively by

〈F ‖〉 =
1

nT

∫
nT

[∫ z2

h(x2)

f ‖|x2
−

∫ z2

h(x1)

f ‖|x1

]
dz dt, (5.8)

〈F ⊥〉 =
1

nT

∫
nT

∫ x2

x1

f ⊥|z2
dx dt. (5.9)

After normalizing by (π/4)ρ0U
2
0 h2N∞ (a quantity that appears in the linear theory of

conversion to internal tides), (5.7) is rewritten as

0 = 〈G〉 − 〈F‖〉 − 〈F⊥〉 + 〈Q〉. (5.10)

Here, normalized values are defined as follows:

〈G〉 =
4〈G〉

πρ0U
2
0 h2N∞

, 〈F‖〉 =
4〈F ‖〉

πρ0U
2
0 h2N∞

,

〈F⊥〉 =
4〈F ⊥〉

πρ0U
2
0 h2N∞

, 〈Q〉 =
4〈Q〉

πρ0U
2
0 h2N∞

.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (5.11)

Note that in the normalization factor (Pétrélis et al. 2006), h is the height of the
topography, U0 is the barotropic tidal amplitude, and N∞ is the background value of
the buoyancy frequency.

After a couple of initial cycles, the flux reaches a quasi-steady state with an
approximately constant amplitude, similar to the results found for other flow statistics.
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Figure 16. (Colour online) (a) Cycle-averaged, integrated energy flux in the streamwise
direction, 〈F ‖〉 (Wm−1), and the vertical direction, 〈F ⊥〉 (Wm−1), as a function of the
slope length. (b) Same as for normalized energy fluxes. Here, the normalization factor is
(π/4)ρ0U

2
0 h2N∞, where h is the height of the sloping topography. Time averaging is performed

over the final five cycles of the simulation.

The spatial distribution of the streamwise flux, 〈pbcubc〉y,t , averaged over five tidal
cycles is shown for case 5 in figure 15. Positive values of the flux correspond to
rightward-propagating energy and vice versa. In order to evaluate the net streamwise
flux carried by the beam, the flux is integrated over the vertical dashed lines in the
figure. The net energy flux is outward on these vertical boundaries, rightward on
the right boundary and leftward on the left boundary. Above and on the right of the
slope, the internal wave flux is strong and concentrated into a beam. On the lower left
portion, the beam widens and the internal wave flux weakens owing to dissipation
associated with interaction with the flat portion of the bottom. Consequently, the
magnitude of the rightward streamwise flux,

∫ z2

h(x2)
F ‖|x2

dz, is substantially larger

relative to the magnitude of the leftward streamwise flux
∫ z2

h(x1)
F ‖|x1

dz.

A comparative study is performed for the five cases based upon the net horizontal
flux, 〈F ‖〉 (sum of the outward fluxes on the left and right boundaries) and the net
vertical flux 〈F ⊥〉 (the outward flux on top boundary) and the results are plotted
in figure 16(a). The horizontal energy flux, 〈F ‖〉, dominates the vertical component.
Both energy fluxes increase with increasing slope length. The linear theory of internal
tides leads to the result that the internal wave flux is proportional to (π/4)ρ0U

2
0 h2N∞

with h being the slope height. Therefore, the energy flux increases with increasing
slope length. The net normalized horizontal flux (〈F‖〉), which uses the linear scaling
for normalization, is plotted as a function of the slope length in figure 16(b). The
normalized value initially decreases and then seems to saturate at higher values of the
slope length. The initial decrease occurs because conversion to turbulence increases,
as will be quantified in the next section. The saturation occurs because eventually,
for high-enough Reynolds numbers, a constant fraction of the linear estimate of
the internal wave flux is lost to local turbulence and locally trapped waves. This
explanation assumes that nonlinearity and turbulence do not fundamentally alter the
scaling law of internal wave generation as deduced from linear theory.

The vertical energy flux, 〈F⊥〉, which is small compared to 〈F‖〉, shows a similar
dependence on the slope length.
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Figure 17. (Colour online) Logarithmic profiles of production, log10|P |, and dissipation,
log10|ε|, as a function of height above the bottom at location Q in the inset in figure 4. Plots
(a, b) correspond to φ = 0◦, when the upslope bottom flow peaks, while (c, d ) correspond to
φ = 180◦, when the downslope bottom flow peaks.

6. Turbulence energetics
Turbulence statistics are computed using spanwise averages. The turbulent kinetic

energy, K =1/2〈u′
iu

′
i〉y also denoted by TKE, represents the energy in fluctuations

with respect to the mean velocity and satisfies the following evolution equation:

∂K

∂t
+ 〈u〉y

∂K

∂x
+ 〈w〉y

∂K

∂z
= P − ε + B − ∂Tx

∂x
− ∂Tz

∂z
. (6.1)

Here, ∂Tx/∂x and ∂Tz/∂z, which correspond to the transport of the TKE, consist of
pressure transport, turbulent transport, viscous transport and SGS transport:

Tx ≡ 1

ρ0

〈p′u′〉y +
1

2
〈u′

iu
′
iu

′〉y − ν
∂K

∂x
+ 〈τ ′

i1u
′
i〉y,

Tz ≡ 1

ρ0

〈p′w′〉y +
1

2
〈u′

iu
′
iw

′〉y − ν
∂K

∂z
+ 〈τ ′

i3u
′
i〉y.

⎫⎪⎪⎬⎪⎪⎭ (6.2)

Also, P is the production term defined as

P ≡ −〈u′
iu

′
j 〉y 〈Sij 〉

y
− 〈τij 〉y〈Sij 〉y, (6.3)

where the last term is the SGS production. The turbulent dissipation rate, ε, is defined
as the sum of the resolved and SGS components:

ε ≡ ν

〈
∂u′

i

∂xj

∂u′
i

∂xj

〉
y

− 〈τijSij 〉
y
. (6.4)

Finally, B is the buoyancy flux defined as

B ≡ − g

ρ0

〈ρ ′w′〉y. (6.5)

Profiles of turbulent production and dissipation are plotted at location Q on the
slope as a function of height above the bottom in figure 17. Results for cases 1,
3 and 5 corresponding to slope lengths of 1.7, 7.2 and 25.0 m are shown at two
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Figure 18. Case 4 at a time corresponding to φ = 0◦: (a) contours of turbulent production
and (b) contours of turbulent dissipation.

phases: φ = 0◦, corresponding to the peak value of the upward bottom velocity, and
φ = 180◦, corresponding to the peak value of the downward velocity. At φ = 0◦, the
turbulent production shown in figure 17(a) peaks near the bottom boundary while
the turbulent dissipation shown in figure 17(b) peaks at the bottom boundary, as
is typical for boundary-layer turbulence. Both production and dissipation increase
with the slope length. The turbulent production and dissipation at φ =180◦, shown in
figure 17(c, d ), exhibit profiles that have faster decay rates relative to those at φ = 0◦.
The peak dissipation at the bottom boundary during the peak downslope flow is
about an order of magnitude smaller than the corresponding value at φ = 0◦. This
occurs despite the fact that mean shear is higher during the downslope motion. In the
present problem, shear alone does not play a key role in determining the turbulence
intensity. During the downslope flow, stratification increases and acts opposite to the
shear effect by suppressing the near-wall turbulence.

The spatial distribution of production and dissipation is shown in figure 18(a, b),
respectively, for case 4 at a time that corresponds to φ = 0◦. Although the largest
values of production are found in the tidal beam and the associated boundary layer
at the slope, a significant amount of production is also found outside of the boundary
layer where it is associated with other temporal harmonics that propagate out at
angles that are larger than the beam angle. Unlike production, the maximum value
of dissipation (∼1m2 s−3) is limited to the slope. Nevertheless, there are some patches
of dissipation on the flat topography adjacent to the slope.

Profiles of the turbulent kinetic energy, K , at a location midway up the slope
are shown in figure 19(a) at a time which corresponds to φ ∼ 0◦. The TKE reaches
maximum value close to the bottom boundary and then decreases with increasing
height from the bottom. With increasing length of the slope, the magnitude of K
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Figure 19. (Colour online) (a) Turbulent kinetic energy profile as a function of height, z∗,
above the bottom at the midpoint of the slope shown in the inset of figure 4. (b) Same TKE
profiles replotted after normalization.

is enhanced. The location of peak K also shifts upwards with increasing slope
length. Figure 19(b) shows profiles of K at the same location and time, plotted after
normalization with the peak mean velocity Usl,max and the beam thickness, lb. This
normalization significantly decreases variation between cases.

Figure 20(b) shows the temporal evolution of each term in the K budget along
with the turbulent kinetic energy for case 3 at the midpoint of the slope and at a
location close to the bottom. In order to illustrate the phasing of these quantities,
the evolution of streamwise velocity at the same location is given in figure 20(a).
The production increases shortly after the onset of the upslope boundary flow to
enhance the turbulent kinetic energy, clearly visible in the curve corresponding to the
TKE during this phase, and reaches maximum value soon after the maximal upward
boundary flow. Peak production is followed closely by peak dissipation that occurs
during the decelerating phase of the upslope flow. Both turbulent production and
dissipation have much smaller values during the downslope flow. The buoyancy flux
and transport terms are significant and correspond to turbulence-generated internal
waves propagating away from the bottom, as discussed extensively by Gayen et al.
(2010) in the context of an oscillating boundary layer over a non-sloping bottom.

The behaviour of production, dissipation, buoyancy flux and transport terms at
a location twice as far from the bottom surface is illustrated as a function of time
in figure 20(c). At this location, the dissipation is insignificant while production,
buoyancy flux and transport dominate. The turbulent production and the buoyancy
flux serve to increase the TKE during the decelerating phase of the upslope flow.
Higher up in the boundary layer, turbulent kinetic energy, production and dissipation
lag in-phase compared to near-boundary values, similar to the case of a non-sloping
bottom reported by Gayen et al. (2010).

Time-averaged and area-integrated TKE, dissipation, production and buoyancy
flux are denoted by 〈K〉, 〈D〉, 〈B〉 and 〈P 〉:

〈K〉 =
ρ0

2nT

∫
nT

∫
Γ

[
〈u′2〉y + 〈v′2〉y + 〈w′2〉y

]
dA dt, (6.6)

〈P 〉 = − ρ0

nT

∫
nT

∫
Γ

[
〈u′

iu
′
j 〉y

∂〈ui〉y

∂xj

+ 〈τij 〉y〈Sij 〉y

]
dA dt, (6.7)
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Figure 20. (Colour online) Time evolution in case 3. (a) Stream velocity is shown as a function
of time at a location midpoint of a slope and 1 cm above the bottom. Temporal evolution
of turbulent kinetic energy, production, dissipation, buoyancy flux and modified transport is
shown in (b, c) at the midpoint of the slope at locations 1 and 2 cm above the bottom. The
unit for TKE is m2 s−2, whereas the unit of other terms in the energy budget is m2 s−3.

〈D〉 =
ρ0

nT

∫
nT

∫
Γ

[
ν

〈
∂u′

i

∂xj

∂u′
i

∂xj

〉
y

− 〈τijSij 〉
y

]
dA dt, (6.8)

〈B〉 = − ρ0

nT

∫
nT

∫
Γ

[
g

ρ0

〈ρ ′w′〉y

]
dA dt. (6.9)

Normalized values are defined as follows:

〈K〉 =
2〈K〉

ρ0U
2
0 Γ

, 〈P〉 =
4〈P 〉

πρ0U
2
0 h2N∞

, 〈D〉 =
4〈D〉

πρ0U
2
0 h2N∞

, 〈B〉 =
4〈B〉

πρ0U
2
0 h2N∞

.

(6.10)

The normalization of the turbulent kinetic energy, 〈K〉, is the same as that of the
kinetic energy density, 〈Ek〉, discussed previously, while that of 〈P 〉 and 〈D〉 is the same
as was used for the internal wave flux, 〈F〉. Figure 21 shows that 〈K〉, production 〈P〉,
dissipation 〈D〉 and buoyancy production 〈B〉 increase with increasing slope length.
The curves also become flatter with increasing slope length. The integrated turbulent
production is larger than the integrated dissipation. The integrated buoyancy flux is
also significant. The data shown in figure 21(b) can be compared to the streamwise
internal wave flux, 〈F‖〉, as discussed earlier in figure 16. For instance, in case 5 with
slope length of 25 m, the integrated turbulent production is approximately 18 % and
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Figure 21. (Colour online) (a) Normalized value of the integrated TKE, 〈K〉, as a function
of the slope length. (b) Normalized values of production 〈P〉, dissipation 〈D〉 and buoyancy
flux 〈B〉. Here, 〈K〉 is normalized by (1/2)ρ0U
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and 〈B〉 is (π/4)ρ0U
2
0 h2N∞.

the integrated turbulent dissipation is approximately 12 % of the streamwise wave
flux.

7. Conclusions
DNS and LES approaches have been used to investigate the dynamics of a stratified

flow over a sloping bottom under an oscillating tidal flow. The three-dimensional,
unsteady simulations are performed in coordinates that conform to the bottom
topography. A dynamic eddy-viscosity model is used for LES and the near-bottom
turbulence is resolved at the moderate Reynolds numbers considered here. The
background stratification is such that the critical slope angle is 5◦, a small value as is
typical in the ocean. The slope length, l, is varied between 1.7 and 25 m to quantify
its influence. The excursion number is chosen to be small in all cases as is typical for
bottom topography in deep water.

Resonant generation of internal waves at the near-critical slope simulated here
leads to an internal wave beam (where the kinetic energy and wave energy flux are
concentrated) that leaves the slope and to a boundary layer under the intensified
wave velocity. There is transition to turbulence in the boundary flow leading to
enhanced viscous dissipation that regularizes the resonant response so that an
oscillating boundary layer in quasi-steady state forms at the slope. The velocity
profile, with a strong near-bottom jet (corresponding to the internal wave beam) and
spatial oscillations as a function of the vertical coordinate, is qualitatively different
from the oscillating boundary layer on a non-sloping bottom. The peak velocity is
found to increase at approximately l0.45 in the turbulent regime, which is different
from that in the laminar regime due to length dependence of the effective turbulent
viscosity. An analytical expression that incorporates the observed length dependence
of turbulent viscosity leads to a scaling law for the peak bottom velocity which is in
good agreement with the scaling observed in the simulations. The width of the beam
also increases according to a power law as a function of the slope length. It is worth
noting that the peak velocity and the width of the beam cannot increase indefinitely
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because the region with uninterrupted critical slope is finite in realistic topography.
The baroclinic velocity shows significant temporal and spatial variability. The internal
wave response leads to an upslope-moving tidal front which propagates shorewards
as a turbulent gravity current.

The velocity spectrum on the slope and inside the boundary layer shows
discrete peaks at the fundamental, harmonics, subharmonic and interharmonics that
correspond to topography-generated waves superposed on a continuous spectrum
associated with broadband turbulence. The energy content in higher harmonics
relative to that in the fundamental increases with the slope length so that the
second harmonic contains about 15% of the energy in the fundamental when the
slope length is l = 25 m, the largest value in the present simulations. The velocity
spectrum at points outside the boundary layer and with little turbulence show more
prominent discrete peaks as well as a continuous spectrum. Turbulence-generated
waves and wave–wave interactions among topographic waves are responsible for the
continuous spectrum at these points.

Turbulent kinetic energy and dissipation rates increase substantially and the
locations of their peaks move upwards with increasing slope length, l. Normalization
of the profiles with the beam width and the maximum slope velocity substantially
reduces the variation between cases. The integrated normalized value of turbulent
production is larger than the corresponding value of turbulent dissipation. In the case
of the longest slope of l = 25 m, the integrated production and turbulent dissipation
are found to be 18 % and 12 %, respectively, of the energy flux associated with the
internal tide. The profiles of turbulent production and dissipation depend on the phase
of the internal tide and are significantly fuller than profiles observed in the boundary
layer below an oscillating current without internal wave generation.

The dimensional baroclinic energy flux increases with the slope length. The non-
dimensional baroclinic energy flux, 〈F||〉, has also been computed with a normalization
factor, (π/4)ρ0U

2
0 h2N∞, taken from linear theory. The value of 〈F||〉 shows a maximum

value of 0.4 (or 40 %) for the smallest slope, l = 1.7 m, decreases with increasing l,
and appears to approach a saturation value, 〈F||〉 � 0.25. The substantial increase of
conversion to turbulence with increasing slope length (turbulent production as high
as 18 % of the internal wave flux when l = 25 m) is a likely contributor to the decrease
in the normalized flux, 〈F||〉, with increasing slope length and its potential saturation.

We acknowledge financial support through NSF grant 0825705 (programme
manager Eric Itsweire).

Appendix. Decomposition of pressure and velocity
Decomposition into barotropic and barotropic (internal tide) components can be

performed in different ways (Holloway 1996; Kunze et al. 2002; Khatiwala 2003;
Nash et al. 2004, 2006; Gerkema & van Haren 2007). Here, we follow Nash et al.
(2004, 2006). The baroclinic wave velocity is defined by

ubc(x, t) = u(x, t) − û(x) − ub(t, x, y), (A 1)

where the residual velocity û(x) = (1/5T )
∫ 5T +t

t
u(x, t) dt is a cycle-averaged mean and

ub(t, y, z) is calculated by enforcing baroclinicity:∫ lz

h(x)

ubc(x, t) dz = 0. (A 2)
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Here, h(x) is the height of the slope topography with respect to the left flat bottom.
Note that, for the present problem with a small slope angle, ub(t, y, z) is approximately
equal to the oscillatory current resulting from the imposed oscillatory pressure gradient
and its dependence on y and z is weak while the residual velocity û(x) is very small.

The density anomaly is estimated at ρbc(x, t) = ρ(x, t) − ρ̂(x) − ρb(t, x, y), where
ρ̂(x) is the average over five tidal cycles. Here ρb(t, x, y) is calculated by enforcing
baroclinicity similar to the baroclinic wave velocity in (A 2). The pressure anomaly is
calculated imposing hydrostatic balance,

pbc(x, t) = ps(t, y, z) +

∫ lz

z

ρbc(x, t)g dz′. (A 3)

The surface contribution, ps(t, y, z), of the baroclinic motion is computed using the
constraint of zero depth-average of the baroclinic pressure perturbation, i.e.∫ lz

h(x)

pbc(x, t) dz = 0. (A 4)
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