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Vortex dynamics in the flow past a sphere in a linearly stratified environment is investigated numer-
ically. Simulations are carried out for a flow with Reynolds number of Re = 3700 and for several
Froude numbers ranging from the unstratified case with Fr = ∞ to a highly stratified wake with
Fr = 0.025. Isosurface of Q criterion is used to elucidate stratification effects on vortical structures
near the sphere and in the wake. Vortical structures in the unstratified case are tube-like and show
no preference in their orientation. Moderate stratification alters the orientation of vortical structures
to streamwise preference but does not change their tube-like form. In strongly stratified cases with
Fr ≤ 0.5, there is strong suppression in vertical motion so that isotropically oriented vortex tubes
of approximately circular cross section are replaced by flattened vortex tubes that are horizontally
oriented. At Fr = 0.025, pancake eddies and surfboard-like inclined structures emerge in the near wake
and have a regular streamwise spacing that is associated with the frequency of vortex shedding from
the sphere. Enstrophy variance budget is used to analyze the vortical structure dynamics. Increasing
stratification generally decreases enstrophy variance for Fr ≥ O(1) cases. The flow enters a new
regime in strongly stratified cases with Fr ≤ 0.25: increasing the stratification increases enstrophy
variance, especially near the body. Stratification distorts the cross-sectional distribution of enstrophy
variance from a circular isotropic shape in the unstratified wake into different shapes, depending on
Fr and distance from the sphere, that include (1) elliptical distribution, (2) twin peaks suggestive of
two-dimensional vortex shedding, and (3) triple-layer distribution where a relatively low enstrophy
layer is sandwiched between the upper and the lower layers with high enstrophy. In the near wake,
vortex stretching by fluctuating and mean strain are both responsible for enhancing vorticity. Increas-
ing stratification (decreasing Fr) to O(1) values tends to suppress vortex stretching. Upon further
reduction of Fr below 0.25, the vortex stretching takes large values near the sphere and, consequently,
enstrophy variance in the near wake increases. The increase in vortex stretching is associated with
unsteady, intermittent shedding of the boundary layer from the sides of the sphere in highly stratified
wakes with Fr < 0.25. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4974503]

I. INTRODUCTION
Turbulence presents a spatially complex distribution of

vorticity. Turbulent flow contains a wide range of vortical
structures with various length scales and turn-over time scales.
The influence of these vortical structures on turbulence dynam-
ics from nonlinear cascade to scalar mixing to kinetic energy
dissipation has been the subject of much study but less so in
stratified flows. Stratification is ubiquitous in the environment
and buoyancy affects the turbulent flows past marine swim-
mers, underwater submersibles, flying vehicles, underwater
topography, islands, and mountains.

Turbulent wakes in stratified fluid have been the sub-
ject of experimental study for over 30 yr as summarized
below but numerical turbulence-resolving simulations of
the wake that include the body are relatively recent. Lin
and Pao1 reviewed experimental studies that showed strat-
ification suppresses vertical motion, promotes downstream
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horizontal coherent eddies, and enables propagation of inter-
nal gravity waves into the far field. Hanazaki2 numeri-
cally simulated stratified flow over a sphere at Reynolds
number (Re) of 200 and Froude number FrR ∈ [0.25 200]
(FrR = U/NR, where U, N, and R are free stream velocity,
buoyancy frequency, and radius of the sphere). Direct numer-
ical simulation (DNS) of Hanazaki2 provided visualization
of downward motion of vertical velocity and isopycnal lines
showing a lee wave behind the sphere at low Fr. Chomaz et al.3

experimentally showed that the downward motion induced by
stratification delays separation. The downward motion also
alters the separation region from circular to a bow-tie shape.
Chomaz et al.4 identified four different regimes based on Fr,
where Fr = U/ND. For Fr < 0.4, the wake corresponds to
triple-layer flow with two lee waves surrounding a layer of
two-dimensional motion. Between Fr of 0.4 and 0.75, the
saturated lee wave suppresses the separation region or splits
it into two. Between Fr of 0.75 and 2, the wake progres-
sively recovers its behavior in a homogeneous fluid. For Fr
larger than 2.25, the near wake is similar to the homogeneous
case.
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A stratified wake at high Fr exhibits three distinct regions.
The first region is the near wake (NW) where the wake
spreads uniformly in all dimensions and turbulence behaves
as it does in a homogeneous fluid. It is followed by a second
non-equilibrium (NEQ) regime identified by Spedding5 where
there is an onset of stratification effect including conversion
of stored potential energy to kinetic energy and anisotropy
between horizontal and vertical motions. The third region
(Q2D) is characterized by the existence of vertically sup-
pressed two-dimensional eddies, the so called “pancake vor-
tices.” The formation mechanism of the pancake vortices has
been debated. Pao and Kao6 state that it is due to the heli-
cal vortex shed by the sphere that persists into the far wake
while Spedding7 attributes the mechanism to a combination
of KH instability and spiral mode instabilities. Bonnier et al.8

and Gourlay et al.9 argue that the existence of pancake vor-
tices does not require coherent structures in the near wake.
Later DNS by Dommermuth et al.,10 Brucker and Sarkar,11

and Diamessis and Spedding12 also find pancake vortices in
their temporal flow model with initial conditions that do not
explicitly include coherent structures. Note that the temporal
flow model refers to an approximation where the streamwise
direction in the computational domain is assumed to be peri-
odic, the Reynolds-averaged statistics evolve in time, and these
statistics are obtained by streamwise averaging. The temporal
approximation is applicable to a frame moving with the body
velocity U and is adequate if the wake deficit is small relative
to U and if realistic initial conditions for the flow field can be
prescribed. The numerical approach of this paper is a spatially
evolving model where streamwise periodicity is not assumed
and the Reynolds-averaged statistics, computed by tempo-
ral averaging, evolve as a function of streamwise distance.
Pasquetti13 avoids ad hoc prescription of the initial conditions
in a temporal model by first performing body-inclusive spa-
tially evolving simulation and then symmetrically embedding
a subdomain from that simulation into a larger domain for
the temporal model. Similar to experiments, Pasquetti13 found
that an intermediate NEQ regime was followed by large scale
quasi-2D structures in the late wake.

Investigation of coherent structures and vorticity statis-
tics has provided useful information regarding the turbulent
wake structure. Yun et al.14 numerically traced vortical struc-
tures behind a sphere at Re = 3700 and 104. Constantinescu
and Squires15 visualized vortical structures using the method
of Jeong and Hussain16 in the subcritical and supercritical
regimes, where the boundary layer on the sphere surface is
laminar and turbulent, respectively. These studies, however,
did not include background density gradient. Spedding5 visu-
alized vertical vorticity of stratified wake up to Nt = 1600
revealing large scale pancake vortices. Spedding17 examined
vortical structure in wakes with Fr ≥ 2 and stated that most
of the late-time properties of long-lived vortex structure are
independent of initial Froude number.

Recently Pal et al.18 performed DNS of stratified flow
past a sphere at Re = 3700 over a wide range of Fr in the
range [0.025,∞]. They found that the near wake at Fr = 0.5
has very low fluctuation energy but further reduction of Fr to
0.25 and beyond regenerates turbulent fluctuations in the near
wake. The turbulent kinetic energy (TKE) in the near wake

(x/D < 20) of these low-Fr wakes became substantially larger
than that in the unstratified case. The simulation data are ana-
lyzed in the present paper and new results on the behavior
of the small scales are presented by analyzing the behav-
ior of all components of enstrophy and its budget. We also
examine the changes in vortex dynamics and coherent struc-
tures, identified using the Q-criterion, that are brought about
by increased stratification. All prior numerical studies of the
vorticity structure in a stratified wake have employed a tem-
poral flow model for the simulations while the present study
has the advantage of using a spatial flow model that includes
the body. We address the following questions. How does strat-
ification change vortical structures near the body and in the
wake? Is there any qualitative difference in terms of enstro-
phy magnitude and distribution between the moderately and
strongly stratified regimes? What are the mechanisms that are
responsible for changes in enstrophy (a metric of small-scale
fluctuations) induced by stratification?

II. FORMULATION
A. Governing equations

Continuity:

∂u∗i
∂x∗i
= 0. (1)

Momentum:

∂u∗i
∂t∗
+ u∗j

∂u∗i
∂x∗j
= −

1
ρ0

∂p∗

∂x∗i
+ ν

∂2u∗i
∂x∗j ∂x∗j

−
ρ̃∗

ρ0
gδi3. (2)

Density:

∂ρ∗

∂t∗
+ u∗j

∂ρ∗

∂x∗j
= κ

∂2ρ∗

∂x∗j ∂x∗j
. (3)

The ∗ superscript denotes dimensional quantities. ν is the kine-
matic viscosity and κ is the density diffusivity. The density is
decomposed into a background density, ρ0, a linear variation
in x3 direction, ρ̄∗(x3) and a fluctuation, ρ̃∗(xi, t),

ρ∗ = ρ0 + ρ̄
∗(x3) + ρ̃∗(xi, t), (4)

where ρ∗ − ρ0 � ρ0. Density variation enters the momentum
equation only through the buoyancy term. These equations
are non-dimensionalized using U (the free stream velocity), D
(the diameter of the sphere), ρ0, and C∗ = −∂ ρ̄∗(x3)/∂x∗3 |(t=0)

TABLE I. Simulation parameters. The sphere center is at x = 0, and the
streamwise domain length is split into downstream (L+x ) and upstream (L−x )
portions; Lx = L+x + L−x .

Case L+x /D L−x /D Lr /D Nx Nr

Fr =∞ 80.1 13.8 16.2 4608 632
Fr = 3 80.1 13.8 59.7 4608 692
Fr = 1 80.1 25.7 59.7 4608 692
Fr = 0.5 79.3 39.2 59.7 4608 692
Fr = 0.25 79.3 39.2 59.7 4608 692
Fr = 0.125 79.3 39.2 59.7 4608 692
Fr = 0.05 23.3 39.2 59.7 3072 692
Fr = 0.025 23.3 39.2 59.7 3072 692
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FIG. 1. Iso-surface of Q criterion at
Q = 1 for Fr = ∞. Note that the sphere
center is at x = 0, y = 0, and z = 0.

that denotes the constant vertical gradient of background
density. The new non-dimensional variables obtained are

t =
t∗U
D

, xi =
x∗i
D

, ui =
u∗i
U

,

ρ =
ρ∗

ρ0
, ρ̃ =

ρ̃∗

DC∗
, p =

p∗

ρ0U2
.

(5)

Substituting Equation (5) into (1)–(3), we obtain the non-
dimensionalized form as follows:

Continuity:

∂ui

∂xi
= 0. (6)

Momentum:

∂ui

∂t
+ uj

∂ui

∂xj
= −

∂p
∂xi
+

1
Re

∂2ui

∂xj∂xj
−

1

Fr2
ρ̃δi3. (7)

Density:

∂ρ

∂t
+ uj

∂ρ

∂xj
=

1
RePr

∂2ρ

∂xj∂xj
. (8)

Here, the relevant non-dimensional parameters are as fol-
lows: the Reynolds number, Re = UD/ν, the Prandtl num-
ber, Pr = ν/κ, and the Froude number, Fr = U/(ND), where
N is the buoyancy frequency defined by N = [−gC∗/ρ0]1/2.
In the following discussion, all variables referenced are
non-dimensional unless otherwise noted.

B. Numerical scheme

The governing equations (6)–(8) are solved numerically
using direct numerical simulation (DNS) in a cylindrical coor-
dinate system on staggered grids. The sphere is represented by
the immersed boundary method of Yang and Balaras,19 and
Balaras.20 The governing equations are marched using a com-
bination of explicit and implicit schemes. Implicit marching by
the second order Crank-Nicolson (CN) scheme is performed
for the viscous terms to alleviate the stiffness of the discretized
system. The remaining terms are marched explicitly using a
third-order Runge-Kutta (RK3) scheme. The periodic bound-
ary condition in the azimuthal direction reduces the discretized
Poisson equation into inversion of a pentadiagonal matrix. The
pentadiagonal matrix system is solved using a direct solver,
Yang and Balaras.19 Inflow and convective outflow boundary
conditions are applied at the inlet and outlet of the domain.
In order to control spurious reflections from internal waves
and other disturbances propagating out of the domain, sponge
regions are employed near the free stream and inlet bound-
aries where the following relaxation terms are added to the
governing equations:

− φ(xi)[ui(xi, t) − Ui], −φ(xi)[ρ(xi, t) − ρ∞(x3)] . (9)

The sponge layer takes the form of a Rayleigh damping func-
tion which is designed in such a way that it gradually relaxes the
velocities and density to their respective values at the bound-
aries. Here U i is the freestream velocity and ρ∞(x3) is the
density of the stratified background. This is accomplished by

FIG. 2. Iso-surface of Q criterion at Q = 50 for Fr = ∞ (left) and Fr = 1 (right). Inset on right panel shows the circular cross section of the vortex tube.
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FIG. 3. Iso-surface of Q criterion at Q = 5 for Fr = 0.5 (left) and for Fr = 0.125 (right). Inset on right shows the elliptical cross section of the vortex tube in the
strongly stratified regime.

adding the explicit damping terms of Equation (9) to the right
hand side of Equations (7) and (8), respectively. The variable
φ(xi) is constructed such that it increases quadratically from
φ = 0 to φ = 1 over a sponge region of thickness 10 grid points
at the inflow and at the freestream boundaries.

C. Parameters

Table I shows parameters for the eight simulations that
range from an unstratified case to the highly stratified case with
Fr = 0.025. All simulations are performed with Re = 3700 and
the number of points in the azimuthal direction is chosen to be
Nθ = 128. The choice of Re = 3700 allows validation against
DNS of unstratified flow past a sphere by Rodriguez et al.21

The choice of Pr = 1 is justified by de Stadler et al.22 Lx/D and
Lr /D are domain sizes in the streamwise and radial directions,
respectively. Domain size in the radial direction and in the
upstream direction for all stratified cases is enlarged to allow
free propagation of internal gravity waves. The total number
of grid points is approximately 400 × 106. Grid stretching is
used in radial and streamwise directions to concentrate points
near the sphere surface in order to resolve the laminar boundary
layer. The domain is decomposed only in the streamwise direc-
tion which reduces communication time between processors as
compared to three-dimensional decomposition. Each simula-
tion requires approximately 500 h run time on 512 processors.

Temporal averaging of data to compute statistics is performed
over 80-100 time units or approximately a single flow-through
time unit after a statistical steady-state.

III. METHODS OF DATA ANALYSIS

The flow is statistically inhomogeneous in all directions.
Thus, Reynolds-averaged statistics are obtained by averaging
solely over time. Vorticity is computed in cylindrical coordi-
nates prior to transformation into the Cartesian coordinate. The
total enstrophy can be decomposed into mean and fluctuating
components. In the present paper, we examine the fluctuat-
ing enstrophy which hereafter is simply called enstrophy (the
second term of the rhs in Equation (11)). Reynolds average
is denoted with overline. Three dimensional visualization of
vortices is done using the Q-criterion of Hunt et al.23 which
defines a vortex by the region where the rate of rotation tensor,
Ωij, exceeds strain rate tensor, Sij. Large positive Q implies
strong swirling motion,

ui = ui + u′i , ρi = ρi + ρ
′
i , ρ̃i = ρ̃i + ρ̃

′
i , pi = pi + p′i ,

(10)

1
2

(ωiωi) =
1
2

(ωi ωi) +
1
2

(
ω′iω

′
i

)
, ωi = ε ijk

∂uk

∂xj
(11)

FIG. 4. Side view azimuthal vorticity
(ωy) for Fr = ∞ (top) and Fr = 0.25
(bottom).
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FIG. 5. Coherent structures in a
strongly stratified wake (Fr = 0.025)
visualized with the isosurface of
Q = 0.25. Top panel is a perspective of
the wake with the sphere at the upper
left corner. Middle panel is a side view
(flow from left to right) and bottom
panel is a top view.

Q =
1
2

(|Ω|2 − |S|2), Ωij =
1
2

(
∂ui

∂xj
−
∂uj

∂xi

)
,

Sij =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
.

(12)

IV. RESULTS

The numerical method and grid resolution of the present
DNS were validated using experimental measurements and
numerical results available in the literature by Pal et al.18

Comparison of nondimensional vortex shedding frequency,
St = f D/U, separation angle, ϕs, drag coefficient, Cd , and rear-
ward stagnation pressure coefficient, Cpb, agrees well with the
previous investigations14,15,21,24–28 as discussed by Pal et al.18

A. Wake vortices
1. Vortex configuration

Figure 1 visualizes instantaneous vortical structures in the
wake using the Q-criterion at Q = 1 for the unstratified case.

FIG. 6. Location of a pancake eddy for
Fr = 0.025 versus time.
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FIG. 7. Location of a pancake eddy vs
time (left) and power spectra of velocity
components for Fr = 0.025 at x/D = 2.19,
y/D = 0.51, and z = 0 (right).

Since Q, defined by Equation (12), represents a region where
the rate of rotation tensor Ωij exceeds the strain rate tensor
Sij, a high value of Q signifies intense rotation of fluid ele-
ments. Close to the body, vortex rings are shed from the sphere
in the unstratified wake (Figure 1). These rings remain cir-
cular before breaking down at around x/D = 2.4, Rodriguez
et al.21 Immediately downstream of the transition, a bun-
dle of entangled vortical structures emerges. These vortices
are tube-like structures with high length-to-diameter aspect
ratio, the so-called vortex tube. For both Fr, even though the
vortex tubes in general do not have directional preference,
the subset of streamwise-oriented tubular structures has high-
magnitude streamwise vorticity and no preference for other
vorticity components. In Figure 1, the density of vortex tubes
per unit volume based on Q = 1 decreases significantly after
x/D ≈ 7.

Figure 2 shows vortices at a higher magnitude of Q = 50.
At this level of Q, vortical structures in the unstratified Fr = ∞
wake are present in the region 1.5 < x/D < 5, while they are
absent elsewhere. The fact that the strength (Q) of the vortex
tubes spanning 1.5 < x/D < 5 is higher than that of vortices
shed from the body indicates that vortex shedding is not the
only source of vorticity. The mechanisms generating vorticity
will be explained later in Sec. IV C. Streaky structures closer
to the sphere seem to have preferred orientation in the stream-
wise direction while this preference is lost away from the body.
Stratification at Fr = 1, Figure 2 (right), elongates the vortex

tubes and thus increases their aspect ratio. The vortical struc-
tures have a vertical undulation owing to a steady lee wave
pattern behind the body. The number density of vortical struc-
tures is significantly smaller than that in the unstratified wake
showing suppression of enstrophy (will be quantified later)
at this level of stratification. Stratification at Fr = 0.5 con-
fines vortex tubes to streamwise-oriented regions as shown in
Figure 3. Two pairs of streaks are observed having their size
longer than the sphere’s diameter. That fluctuating enstrophy is
suppressed by stratification is evident since vortical structures
at Fr = 0.5 are barely observed even with Q = 5.

While vortical structures depicted by the isosurface
of Q for weak stratification (Fr ≥ 0.5) bear some simi-
larities to the unstratified case in terms of size, aspect
ratio, and orientation, structures at stronger stratification
(Fr = 0.125) shown in Figure 3 (right) are significantly dif-
ferent. From Figure 3 (right), immediately after the sphere
there is a stack of long thin flattened tubes that alternate
on either side of the vertical center-plane. This is due to
quasi two-dimensional vortex shedding from the sides of the
sphere.

The azimuthal vorticity,ωy, is organized into a triple layer
as shown by the side view of the Fr = 0.25 case in Figure 4.
The lee wave is apparent in the stratified case and the vari-
ability of vorticity is diminished. The vertical wake height is
narrower in comparison to the unstratified case and the wake
is bounded by the top and bottom shear layers which exhibit

FIG. 8. Isosurface of Q criterion used to
examine flow separation.
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vertical undulations impressed by a steady lee wave pattern but
little turbulence. The middle layer contains horizontal strips
of vorticity that are thin in the vertical. The isosurface of Q at
Fr = 0.25 is similar to that of Fr = 0.125 and is not shown here.

The quasi-2D regime is a feature of the far wake, appear-
ing at x/D ≈ 1000 or Nt ≈ 250 in the moderately stratified
Fr = 4 wake simulated by Brucker and Sarkar11 in a temporal
flow model. When the stratification is very high, pancake vor-
tices emerge in the near wake. Isosurface of Q = 0.25 in the
perspective view of Figure 5 (top) reveals two types of orga-
nized structures, both are thin in the vertical. Pancake vortices
which take the form of discs are clear and the first pancake
eddy is seen in the perspective view of the top panel at x/D ≈ 6

which corresponds to Nt = 6/Fr = 240 which is close to the
value of Nt ≈ 250 quoted by Brucker and Sarkar.11 While the
pancake vortices are located off the center line, there are “surf-
board” structures sequentially located closer to the middle. The
side view (Figure 5 middle) shows that, while the pancakes are
located on the horizontal center plane, the surfboard-like struc-
tures are not horizontally oriented and their leading edges are
located at the same x/D location as of the pancake eddies. In
the side view, each surfboard pair appears as a V with the ver-
tex of the V coincident with the pancake. An average distance
between the pancake eddies is x/D = 4.41 according to Figure
5 (bottom). The advection velocity of a pancake is obtained
by tracking an eddy through time as shown in Figure 6.

FIG. 9. Enstrophy, 0.5(ω′iω
′
i ), plotted

over a transverse cross section at var-
ious streamwise locations. Cases with
Fr = ∞, 3, and 1 are shown.
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Figure 7 (left) reveals an advection velocity of 0.846. The spac-
ing between two subsequent pancake eddies and this estimate
of advection velocity allows conversion to temporal frequency
of the pancake eddy, leading to a Strouhal number of St = f D/U
= 0.192. The primary peak in the streamwise and spanwise
velocities power spectra (Figure 7 right panel) is at St ≈ 0.2.
Therefore, the origin of these pancake eddies is shedding of
boundary layer vorticity from the sides of the sphere (similar to
the Karman vortex street of a cylinder). This frequency is close
to the shedding frequency of flow past a cylinder at (St = 0.208)
reported in the work of Parnaudeau et al.29 The surfboard struc-
tures are shed from the sphere with the same frequency as of
the pancakes. Inspection of the flow near the sphere suggests

that the surfboards are an interaction of the top and bottom
separated boundary layers with the horizontal vortex shedding.

Another kinematic aspect of the pancakes and of the surf-
boards apart from their convective translation is their rotational
direction. The isosurface of Q is colored with vertical vorticity.
The pancake disks originate from quasi–2D shedding of the
boundary layer in the horizontal center plane. The shedding
occurs from alternate sides of the sphere and the sign of the
vertical vorticity of a pancake disk depends on the side of the
centerline that it occupies. Two surfboard structures that form
a “V” in Figure 5 (middle) have the same orientation of verti-
cal vorticity as the pancake at the vertex of the V suggesting
continuity of vortex lines at the leading edge of the V. The

FIG. 10. Enstrophy, 0.5(ω′iω
′
i ), plot-

ted over a transverse cross section at var-
ious streamwise locations. Cases with
Fr = 0.25, 0.125, and 0.05 are shown.
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FIG. 11. Streamwise variation of area-
integrated enstrophy.

vertical vorticity amplitude of these surfboards is, however,
smaller than that of the pancake disks. Overall, the dis-
tribution of vorticity is indicative of a sinuous instability
mode.

2. Separation

While there are quantitative changes in how the incoming
flow goes past the sphere under different levels of stratification,
the cases of Fr = 0.5 and 0.125 shown in Figure 8 are suffi-
cient to illustrate the qualitative changes induced by buoyancy
on the flow at the sphere and its separation. At moderate Fr,
the incoming flow has enough kinetic energy to go above and
below the sphere which can be seen from the smooth and con-
tinuous isosurface of Q at Fr = 0.5. There is a difference with
respect to the axisymmetric separation in the unstratified case.
Stratification delays separation at the top and bottom of the
sphere with respect to its sides. Due to conversion of stored
potential energy to kinetic energy, fluid at the top and bot-
tom regions gains momentum which helps the boundary layer
overcome the adverse pressure gradient and remain attached
to the surface further downstream than in the horizontal plane.
This results in the delay of separation in the vertical plane.
The separation line viewed from the rear (bottom-left panel of
Figure 8) has a bow-tie shape. At sufficiently low Fr, there is
another qualitative change: flow blocking, i.e., the incoming
flow does not have enough kinetic energy to go past the top and
bottom points of the sphere. Therefore, the flow is forced to go
around the sphere for Fr = 0.125 as shown by the absence of
Q isosurface in the central region on the frontward-facing sur-
face of the sphere (Figure 8, bottom right panel). The boundary

layer at Fr = 0.125 is shed from the sides of the sphere (Figure
8, top and bottom right panels).

3. Spatial distribution of enstrophy variance

Figure 9 shows the spatial distribution of enstrophy at
different downstream locations for Fr = ∞, 3, and 1. Beyond
x/D = 2.5, the enstrophy in the core of the wake tends to
decrease with decreasing Fr until Fr = 0.5 (not plotted) where
the enstrophy is rather small, about 1% of that at Fr = ∞.
The distribution of enstrophy also changes among cases. Con-
sider x/D = 0.52 (top panel). For Fr = ∞, there is a thin circular
ring of high enstrophy associated with the separating boundary
layer, also seen as a sequence of vortex rings in the visualiza-
tion of Q (Figure 1). The separating boundary layer forms
an unstable ring-like shear layer that has enhanced enstrophy.
As stratification increases (Fr decreases), the boundary of the
region with relatively high enstrophy starts distorting from a
circle to an ellipse. This non-circular cross section very close to
the sphere is consistent with the previous discussion of bound-
ary layer separation occurring at different angles as measured
from the sphere forward stagnation point. At x/D = 0.52, the
Fr = 1 case shows the highest enstrophy among the three cases
which can also be surmised from the isosurface of Q = 50 where
intense swirling vortex tubes move slightly closer to the sphere
as compared to Fr = ∞ in Figure 2.

The fluctuating enstrophy increases moving downstream
to x/D = 1.5. While peak enstrophy still resides at the periph-
ery, there is significant enstrophy in the core associated with
the recirculating flow and unsteady, flapping shear layer. Strat-
ification causes downward motion behind the sphere keeping

FIG. 12. Partition of area-integrated
enstrophy into (a) horizontal component
and (b) vertical component.
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FIG. 13. Cross-sectional integration of
stretching term S1 (left) and S2 (right).

relatively high enstrophy closer to the sphere. Moving down-
stream, the buoyancy-induced anisotropy of cross-sectional
enstrophy becomes more pronounced. At x/D = 1.5, the Fr = 1
cases loses the signature of the vortex ring and, instead, has a
dumbbell shape with two local peaks, one on each side of the
centerline. These two blobs of enstrophy are approximately
4 times larger in magnitude compared with Fr = ∞ and 3. At
x/D = 2.5, the enstrophy increases for Fr = ∞ and Fr = 3 while
it fades for Fr = 1. By x/D = 10 (bottom panel), the two sepa-
rated peaks of enstrophy are no longer prominent in the Fr = 1
wake. Although the enstrophy increases rapidly near the body
for Fr = 1, stratification at this level suppresses small-scale
turbulence after x/D = 1.5 according to Figure 9.

Figure 10 shows cross-sectional enstrophy at low Fr of
0.25, 0.125, and 0.05. There is a striking increase of enstro-
phy in these low-Fr cases relative to the moderate-Fr cases of
Figure 9. This implies that small scale fluctuations reappear
when Fr decreases beyond 0.25. Furthermore, the distribution
of enstrophy is also different in this low-Fr regime relative
to that at higher Fr. The flow separates from the sides of the
sphere leading to intensified vertical side lobes of vorticity at
x/D = 0.52. The separated shear layer responds to stratification
by developing instabilities with small vertical scale as was seen
in the Q-visualizations and also flaps unsteadily (more so in the
Fr = 0.125 and 0.05 cases) in the horizontal plane. As a result
the enstrophy variance takes the form of a horizontally oriented
triple layer: there are two outer layers with high enstrophy and
a central layer with low enstrophy. The aspect ratio (horizontal

to vertical) of these layers becomes progressively larger with
increasing Fr.

B. Area-integrated values of enstrophy
and its components

The enstrophy integrated over the y-z cross section is
shown in Figure 11 for different Fr. In all cases the enstro-
phy increases, reaches a maximum close to the sphere surface,
and then decays. In the low- or moderate-stratification regime
with Fr ≥ O(1), the effect of buoyancy is to reduce enstrophy.
The onset of the stratification effect scales as Nx/D so that the
deviation of enstrophy relative to the unstratified case in the
Fr = 3 wake occurs further downstream than in the Fr = 1
case. The value of Fr = 0.5 appears to be a critical Fr where
the integrated enstrophy in the near wake (x/D < 20) is the
smallest among all cases.

There is a qualitative change in the stratification effect on
enstrophy when Fr decreases below 0.5, namely, the integrated
enstrophy near the body (x/D < 2) monotonically increases
with decreasing Fr. As discussed previously, the boundary
layer sheds in a two-dimensional manner in this low-Fr regime;
furthermore, vortices are shed unsteadily in the horizontal
plane from various vertical locations, develop instabilities with
small vertical scale, U/N, and also flap unsteadily in the hori-
zontal plane. These aspects of unsteady motion create a wide
range of scales of motion explaining why the enstrophy near
the body increases again once Fr < 0.5.

FIG. 14. Cross-sectional integration of
dissipation (left) and advection (right).



020704-11 Chongsiripinyo, Pal, and Sarkar Phys. Fluids 29, 020704 (2017)

FIG. 15. Cross-sectional integration of
baroclinic torque (left) and stretching
term S3 (right).

The enstrophy near the body (x/D < 2) in the low-Fr
cases with Fr ≤ 0.125 exceeds the corresponding values in
the unstratified case substantially, by 1-2 orders of magnitude.
There is a rapid rise of enstrophy in the unstratified case which
brings its value close to that in the low-Fr regime soon after.
However, the relatively rapid spread of the unstratified wake
thickness causes a corresponding decrease in enstrophy so that,
for 10 < x/D < 70, the unstratified wake has lower enstrophy
than these low-Fr cases. This is in contrast to the situation in
the Fr ≥ O(1) regime where the unstratified wake has larger
enstrophy for 10 < x/D < 70.

Figure 12 shows decomposition of area-integrated fluctu-
ating enstrophy into vertical (ω′z) and horizontal (ω′h) com-
ponents. Since ω′x and ω′y components behave similarly, both
contributions are lumped together in that of ω′h. The behavior
of the unstratified case (black dashed-dotted line) shows that
there is little difference between the evolution of horizontal
and vertical components. It was shown in Figure 11 that the
low-Fr cases with Fr ≤ 0.125 have larger enstrophy relative to
the unstratified case. This remains true for ω′h, but only very
near the body (x/D < 2.5) in the case of ω′z. The reason for
the similar behavior of ω′z and ω′h for x/D < 2.5 is that vortex
shedding from the side of the sphere (observed in Figures 9
and 10) and subsequent instabilities of the shed vorticity layers
increase all components of fluctuating vorticity for x/D < 2.5.
However the stabilizing effect of buoyancy acts further down-
stream so that the contribution of the vertical component in
all stratified wake simulations tends to decrease faster than the
unstratified case at x/D ≈ 4.

C. Enstrophy mechanisms

The vortex dynamics is analyzed by means of
Equation (13) below for the enstrophy variance. Each term
is computed at statistical steady-state and the temporal deriva-
tive term thus vanishes. The interesting aspect of this equation
is whether each term behaves as a source or as a sink of enstro-
phy. At sufficiently high Re, the dominant source term for the

enstrophy equation is stretching by turbulent vorticity (S1)
and the dominant sink term is dissipation (DISSIP), Tennekes
and Lumley.30 Vortex stretching underpins the energy cascade
from large to small scales. The strongly positive values of S1
in Figure 13 imply that stretching outweighs compression of
vortex lines and the net effect of the strain field is to create
enstrophy, Tennekes and Lumley.30

Consider the unstratified case first. The dominance of
stretching and dissipation plotted in Figures 13 and 14, respec-
tively, is clear. Among the three stretching terms, stretching by
fluctuating strain (S1) is dominant, stretching by mean strain
(S2) is substantial while stretching of mean vorticity by fluc-
tuating strain (S3) (Figure 15, right) is the smallest. Recall
that, although there were intense vortical structures (Q = 50)
in Figure 2 between 1.5 < x/D < 5, they were absent near the
sphere for x/D < 1.5. It is the large positive value of the vor-
tex stretching terms (S1 and S2) in 1.5< x/D < 5 that enables
the formation of these large-Q structures. Viscous dissipation
(DISSIP) is the dominant sink for enstrophy while advection
by mean (ADVEC) tends to redistribute enstrophy from the
region near peak enstrophy. The other terms are at least an
order of magnitude less than S1, S2, ADVEC, DISSIP as well
described by the order of magnitude analysis of Tennekes and
Lumley,30
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The physical meaning of each term is as follows:
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: Rate of change of fluctuating enstrophy (DDT ),
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ij : Stretching/tilting of vorticity fluctuation by fluctuating strain (S1),
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: Baroclinic torque (BT ).

Buoyancy significantly affects the distribution and magni-
tude of enstrophy as has been discussed in Secs. IV A and IV B,
e.g., Sec. IV B shows that area-integrated enstrophy generally
decreases with increasing stratification in moderately stratified
wakes with Fr = O(1) and generally increases with increas-
ing stratification for highly stratified wakes with Fr ≤ 0.125.
Quantification of Equation (13) allows examination of the
underlying reason for the stratification effect observed in the
simulations. Surprisingly, the area-integrated baroclinic torque
(BT ) is found to be relatively small (Figure 15, left) and not
the primary reason. Rather it is the implicit effect of buoyancy
on vortex stretching as elaborated below.

Figure 13 shows that vortex stretching tends to decrease
when the stratification increases as Fr is reduced to O(1) val-
ues. In accordance with integrated enstrophy in Figure 11,
Fr = 0.5 is the critical Fr number beyond which a further
reduction of Fr increases the vortex stretching term. Fr =
0.125 and Fr = 0.05 wakes experience a higher peak in
stretching by turbulent strain compared to the unstratified case.
This increase is also observed in the stretching by the mean
strain where S2 increases when Fr < 0.5. Reactivated velocity

fluctuations and high velocity gradient in the vertical direction
(the mean flow is reorganized into multiple two-dimensional
layers) combine to increase S2. It is interesting to note that,
while integrated enstrophy and their components shown in
Figures 11 and 12 for Fr = 0.25 and 0.125 are larger than that of
unstratified wake until the far end of the downstream domain,
vortex stretching remains large only closer to the sphere and
become less than unstratified stretching by x/D ≈ 3. Regard-
less of the numerical approach one uses (LES, RANS) away
from the body, it is thus imperative that the model accounts
for motions near the sphere in these low-Fr wakes to capture
the near-sphere enhancement of enstrophy that then lasts far
downstream.

The stratified cases with Fr ≤ 0.125 experience stronger
vortex stretching compared with the unstratified case and strat-
ified case at Fr ≥ 0.25. The peaks of vortex stretching lie in
the vicinity of highly rotational coherent vortices which shift
upstream in the low Fr cases. Thus, as stratification increases,
enstrophy is produced via a stretching mechanism closer to
the sphere. Even with relatively high mean strain in the near
wake compared to late wake, fluctuating strain still exceeds

FIG. 16. Cross-sectional integration of
turbulent diffusion (left) and production
(right).
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the mean strain resulting in the higher value of S1 compared
to S2 in all cases.

While stretching and tilting by mean and fluctuating strain
act mainly as the source, advection and dissipation balance
them by being a transport and a sink of the enstrophy. Simi-
lar to the unstratified case, small scale dissipation remains the
primary sink in the fluctuating enstrophy equation while mean
advection acts secondarily. Unlike advection by mean flow,
turbulent transport and production increase enstrophy near the
sphere and decrease enstrophy further downstream as shown
in Figure 16. Both transport and production terms are larger
in magnitude in the low-Fr regime. Stretching, S3, and vis-
cous diffusion term, VDiff (not shown here) are two orders of
magnitude smaller than S1 and do not significantly alter the
enstrophy field.

V. SUMMARY AND CONCLUSIONS

DNS of flow past a sphere at Re = 3700 has been carried
out in moderate-to-highly stratified cases and results with eight
stratification levels of Fr =∞, 3, 1, 0.5, 0.25, 0.125, 0.05, and
0.025 are reported; here, the unstratified case corresponds to
Fr = ∞. Vortex dynamics is investigated by means of visual-
ization of instantaneous vortical structures with the Q criterion,
spatial distribution, and magnitude of enstrophy (ω′iω

′
i ), and

computation of terms in the enstrophy transport equation.
The Q criterion enables three-dimensional visualization

of vortical structures. In the unstratified case, circular vor-
tex rings are shed from the sphere which then break down
into small structures after approximately one and a half times
the sphere diameter. These small structures in the unstratified
case are tube-like and show no preference in their orientation.
Highly rotational vortex tubes are seen in the 1.5 < x/D < 5
region behind the sphere and their rotational strength gradu-
ally decreases downstream. Moderate stratification, Fr = O(1),
preferentially orients vortex tubes in the streamwise direction
but does not change their tube-like shape. At 0.25< Fr < 1,
the lee wave impresses its undulation on the vortical
structures.

High stratification, Fr ≤ 0.125, significantly changes both
the shape and orientation of the vortical structures. The cross
section of vortex tubes is no longer circular but flattened. The
orientation of the vortex tubes lies in the horizontal plane. At
Fr = 0.025, isosurface of Q shows distinct pancake eddies and
inclined surfboard structures, both structures being thin in the
vertical. The pancake eddies are disc-like structures located in
the central horizontal plane that occur alternately on each side
with an offset from the center line and have an alternating sign
of vertical vorticity. The surfboard structures are located in the
middle, are inclined with the horizontal, and form successive
V-shaped structures. The pancakes are regularly spaced with
distance between two consecutive pancake eddies on the same
side approximately 5D corresponding to the energy spectrum
peak at Strouhal number of 0.2 associated with vortex shed-
ding. Surfboard structures are shed with the same frequency
as the pancake eddies. Thus, pancake eddies that occur in the
near wake when the stratification is high are associated with
the dominant vortex shedding mode at Re = 3700. The vor-
ticity pattern is akin to that of a sinuous mode. The behavior

at higher Re or at moderate-to-low stratification (Fr ≥ O(1))
requires further exploration.

The distribution of enstrophy (ω′iω
′
i ) across the wake

cross section is isotropic in the unstratified case. Stratification
distorts this distribution from circular to elliptical, close to
the sphere. The enstrophy magnitude decreases with increas-
ing stratification until Fr of 0.5. In contrast, there is a rapid
increase of enstrophy with increasing stratification when Fr is
decreased to 0.125 and beyond. At Fr = 0.25, three distinct
horizontal layers are found where relatively low enstrophy
is sandwiched between the upper and lower layers with high
enstrophy. With increasing stratification, these three layers are
vertically located closer to each other leaving a small thin layer
in the middle.

The enstrophy equation shows that the dominant bal-
ance in the unstratified wake is between vortex stretching and
dissipation with secondary contributions from advection and
turbulent diffusion. In the stratified wake, the dominant balance
remains between vortex stretching and dissipation with the
contribution of the baroclinic term being secondary. Thus, the
implicit stratification effect on vortex stretching is responsi-
ble for the changes in enstrophy with stratification observed in
the simulations. In particular, stratified wakes with Fr < 0.125
have large vortex stretching in the region near the body that
is associated with unsteady and intermittent shedding of the
boundary layer from various vertical locations at the sides of
the sphere. The vortex stretching in the region x/D < 2 is suf-
ficiently large so that the enstrophy remains larger than in the
unstratified case far downstream. The implication is that it
is important to resolve the near-body flow for low-Fr wakes
in order to obtain accurate results for the far wake. Simu-
lations will have to be continued into the quasi–2D regime
for Fr ≥O(1) to investigate the persistence of near-body flow
characteristics.
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