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Direct numerical simulation is used to investigate the nonlinear evolution of a
horizontally oriented mixing layer with uniform stable stratification and coordinate
system rotation about the vertical axis. The important dimensional parameters
governing inviscid dynamics are maximum shear S(t), buoyancy frequency N, angular
velocity of rotation Ω and characteristic shear thickness L(t). The effect of rotation
rate, Ω , on the development of fluctuations in the shear layer is systematically studied
in a regime of strong stratification. An instability mechanism, qualitatively distinct
from the inertial instability, is found to deform columnar vortex cores in vertical
planes for a strongly stratified rotating mixing layer. This mechanism emerges when
centreline absolute vertical vorticity, 〈ω3〉(t) + 2Ω , is nearly zero as predicted by
the linear stability analysis in Part 1 (J. Fluid. Mech., vol. 703, 2012, pp. 29–48).
When the initial rotation rate is moderately anticyclonic, strong destabilization and a
cascade to small scales is observed, consistent with prior studies involving horizontally
sheared flow in the presence of rotation. Examination of enstrophy budgets in cases
which are initially inertially unstable reveal the importance of baroclinic torque in
maintaining lateral enstrophy fluctuations substantially beyond the time when the flow
becomes inertially stable. The cyclonic stratified cases show weak nonlinearity in
vortex dynamics. At high Reynolds number, despite the strong stratification, the flow
exhibits three-dimensional, nonlinear dynamics and significant vertical mixing except
for cases where the rotation is stabilizing.
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1. Introduction
The effects of strong stratification and moderate coordinate system rotation rates,

where Frh = S/N . O(1) and Ro = S/2Ω ∼ O(1), on shear flow is important for
basic understanding of submesoscale ocean dynamics. Here, Frh, is the horizontal
Froude number, Ro is the Rossby number, and S the maximum shear, N the
buoyancy frequency and Ω the angular velocity of rotation. This study explores
a horizontally oriented hyperbolic-tangent mixing layer including stratification and
rotation effects. Isolated horizontal shear is prevalent in boundary currents and in the
wake of isolated topography. Previous work has explored the nonlinear evolution of
horizontally oriented shear layers subjected to rotation (Métais et al. 1995; Potylitsin
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FIGURE 1. Schematic of the rotating stratified horizontal shear layer. Additional relevant
parameters include the vorticity thickness δω = 1U/|〈ω3〉|max, kinematic viscosity ν, scalar
diffusivity κ and reference density ρ0. Cyclonic rotation refers to cases where centreline
〈ω3〉 and Ω have the same sign, while anticyclonic rotation refers to cases where they have
opposite signs.

& Peltier 2003) or stratification (Basak & Sarkar 2006; Arobone & Sarkar 2010) alone,
but not in combination. Figure 1 gives a schematic illustrating the rotating stratified
horizontal shear layer and relevant dimensional parameters.

In Part 1 (Arobone & Sarkar 2012) the effect of rotation and stratification on
growth rates for linear evolution of exponentially growing modes was explored for a
horizontal shear layer. The unstratified rotating shear layer is known to be susceptible
to inertial (i.e. centrifugal) instability, that is typically manifested as overturning
motions with low streamwise wavenumber, and the barotropic instability associated
with horizontal shear that is manifested as vortex trains such as Kelvin–Helmholtz
(KH) billows. Stratification acted to stabilize the inertial instability for moderate
values of Ri−1/2

b k3, where Rib = N2/S2 is the Richardson number and k3 the
vertical wavenumber, and increased the range of vertical wavenumbers associated
with both inertial and barotropic instability. When the absolute vertical vorticity,
〈ω3〉 + 2Ω = −S + 2Ω , was nearly zero at the centreline, a new instability was
found to occur whereby a much larger range of vertical scales was destabilized relative
to the non-rotating case as seen in figure 2. Note that the inertial instability of rotating
flows is inoperative for −S + 2Ω > 0. Lastly, self-similar regimes were observed when
stratification was strong (Rib > 1) and/or the rotation rate was rapid (|2Ω/S| � 1). In
the present paper, we assess the role of buoyancy during the nonlinear evolution of the
stratified rotating shear layer through direct numerical simulation (DNS).

The horizontally oriented shear layer under the influence of rotation alone and
without stratification was explored by Métais et al. (1995) using direct and large-
eddy simulations. The Reynolds number based on free-stream velocity difference and
initial vorticity thickness was Re = 100 and a 643 grid was used. In cases with
cyclonic rotation (and anticyclonic rotation when |Ro(t)| 6 1) three-dimensionality
was inhibited, consistent with the Taylor–Proudman theorem. For weaker anticyclonic
rotation, the flow was strongly destabilized with maximum destabilization achieved
when Ro ≈ −2.5, consistent with the linear theory of Yanase et al. (1993). In the
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FIGURE 2. Contours of growth rate for linear stability of the stratified horizontal shear layer
for (a) the non-rotating case, Rib = 4, 2Ω = 0, and (b) the zero absolute vorticity case
Rib = 10, 2Ω =−1, based on the results of Part 1 (Arobone & Sarkar 2012).

strongly destabilized cases, the vorticity in the shear layer evolved to a collection
of strong longitudinal vortex tubes, slightly inclined with respect to vertical. KH
rollers were suppressed, yet more enstrophy resulted than in the non-rotating case. The
weak anticyclonic cases approached a state of near-constant shear with approximately
zero absolute vorticity. Vertical vorticity was proposed to be destroyed via the weak
absolute vorticity stretching mechanism of Lesieur, Yanase & Métais (1991).

The effect of stratification alone without system rotation on a horizontally oriented
shear layer was explored by Basak & Sarkar (2006) and Arobone & Sarkar (2010)
using DNS. The structural organization of vorticity and density fields was the focus of
Basak & Sarkar (2006). In strongly stratified cases, columnar vortex cores emerged
from an initially turbulent state and subsequently dislocated forming a lattice of
‘pancake’ eddies with large vertical shear and density gradients between the pancakes.
The vertical length of vortex cores was found to be proportional to 1U/N where
1U denotes the imposed velocity difference and N the uniform stratification. Density
intrusions and internal gravity waves were observed away from the sheared region.
Arobone & Sarkar (2010) extended this work, focusing on statistics and the role of
coherent vortical structures. Many statistics, such as turbulent stresses, approached self-
similar profiles once Rib(t)� 1. For large Rib, transport of density fluctuations was
strongly counter-gradient in sharp contrast with the co-gradient transport of a passive
tracer observed in the unstratified case. In strongly stratified cases coherent structure
evolution exhibited vortical structure reminiscent of the zigzag instability (Billant &
Chomaz 2000).

There are observations of asymmetry between cyclonic and anticyclonic vortices in
geophysical flows, e.g. figure 1 of Potylitsin & Peltier (1998) which shows asymmetry
of the von Kármán vortex street in the lee of mountains on the island of Jan Mayen.
Flament et al. (2001) observed a horizontal shear layer, containing anticylonic vortices
having ω3 ∼ −f , where f is the Coriolis parameter, forming in the westward North
Equatorial Current past the island of Hawaii. The shear layer grew in thickness owing
to paring of these anticylonic vortices. It was suggested that stronger vortices were
not observed due to inertial instability. Anticyclones are quite difficult to generate
in the laboratory in a homogeneous fluid, e.g. Kloosterziel & van Heijst (1991) and
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Afanasyev & Peltier (1998). In the latter publication the inertial instability was clearly
demonstrated for various values of Ro through novel experimental techniques.

Numerical experiments have also shown asymmetry between cyclones and
anticyclones for moderate rotation rates. Bartello, Métais & Lesieur (1994) used
numerical simulation to examine the three-dimensionalization of initially quasi-
two-dimensional flow along with the two-dimensionalization of initially isotropic
three-dimensional flow in an unstratified background. Without rotation, three-
dimensionalization of all initially quasi-two-dimensional vortices was observed. When
the Coriolis parameter matched [ω2D]rms a rapid destabilization of anticyclones
occurred; however both cyclones and anticyclones remained stable for more rapid
rotation rates. Forced three-dimensional rotating stratified isotropic turbulence was
investigated numerically by Smith & Waleffe (2002). Forcing was localized at a large
wavenumber. When Fr was less than a critical value, energy transferred from small to
large scales. For N/f � 2, large-scale flow arose as vertically sheared horizontal flow
with potential vorticity (PV) modes playing a secondary role. For 1/2 6 N/f 6 2, PV
modes dominated and inertial–gravity waves were insignificant. Lastly, for N/f � 1/2
it was suggested, but not demonstrated, that flow would be dominated by large-scale
cyclonic vortices as in the unstratified rapidly rotating cases. Experiments exploring
grid turbulence in a rotating stratified tank were carried out by Praud, Sommeria &
Fincham (2006). For large magnitudes of Ro, a significant decay of kinetic energy was
observed with respect to the lower-Ro cases, irrespective of the stratification strength.
In the low-Ro regime, the intense vortices were all cyclonic. At late times, they took
the form of lens-like eddies with an aspect ratio proportional to f /N.

The final state of an initially inertially unstable distribution of vorticity is of interest.
Kloosterziel, Carnevale & Orlandi (2007a) studied the unfolding of the inertial
instability in initially barotropic vortices in a uniformly stratified fluid. The simulations
were axisymmetric such that the effects of inertial instability were isolated. Barotropic
vortex dipoles emerged, mixing momentum such that flow evolved to a state that
was no longer inertially unstable. A theoretical construction was also provided to
infer the final state of angular momentum at high Reynolds number given the initial
distribution. Interestingly, the arguments of Kloosterziel et al. (2007a) implied that
the inertial instability would mix the rotating shear layer to a state with nearly zero
absolute vorticity as was indeed found by Métais et al. (1995), Kloosterziel, Orlandi
& Carnevale (2007b) and Plougonven & Zeitlin (2009) through DNS of anticyclonic
cases with weak system rotation rate. Carnevale et al. (2011) provided a method to
predict the aftermath of vortex breakup in unstratified rotating flow taking into account
both inertial and barotropic instability of vortices.

Observations of asymmetry between cyclonic and anticyclonic vortices in nature
as well as in laboratory/numerical experiments have prompted stability analyses
of barotropic vortices under the influence of stratification and rotation. Potylitsin
& Peltier (1998) explored the effect of stratification and rotation on the three-
dimensional stability of barotropic vortices with elliptic cross-sections resulting from
the KH instability of a hyperbolic-tangent shear layer. Maximum destabilization in the
unstratified case was observed for anticyclonic rotation with Ro−1 = −Ω/S = −0.2,
with the edge-mode growth rate being dominant, and the inertial instability mechanism
underlying this instability being absent in the non-rotating case. Stratification was
found to suppress the stationary edge mode, while only slightly attenuating the first-
harmonic edge mode. No additional modes were found to emerge in the presence of
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stratification. The elliptical mode is least influenced by stratification and is largely
dominant for stronger anticyclonic rotation, −0.5 < −Ω/S < −0.3. No modes were
significantly unstable for |Ro−1|> 0.5, but the stability of this regime was not explored
for Fr−2 = N2/S2 > 0.2. The effect of ellipticity on three-dimensional instabilities of
Stuart vortices was explored in Potylitsin & Peltier (1999). For low ellipticity the
inertial instability dominated, while for high ellipticity a rotation-augmented elliptical
instability was most unstable. The nonlinear evolution of columnar vortices subject
to rotational effects alone was explored in Potylitsin & Peltier (2003). Here, the
distinctions between nonlinear inertial and elliptical instabilities are clearly presented
using isosurfaces of perturbation vorticity.

The zigzag instability of a counter-rotating vertical vortex pair in a stratified fluid
introduced by Billant & Chomaz (2000) was explored by Otheguy, Billant & Chomaz
(2006a) for a co-rotating vortex pair, such as emerge in a shear layer. Perturbations
changed from antisymmetric to symmetric when vortices were co-rotating, and their
wavelength depended on the separation distance rather than vortex radius as was
the case for counter-rotating vortices. The effect of planetary rotation on the co-
rotating zigzag instability was investigated by Otheguy, Billant & Chomaz (2006b).
Anticyclonic rotation with Ro < −3.67 was found to decrease the vertical length scale
associated with zigzag instability, while weaker anticyclonic rotation rates increased
the length scale. For Ro→ 0, the quasi-geostrophic scaling of vertical length scale
proportional to vortex spacing multiplied by f /N was observed.

In the present paper, we follow up the linear stability analysis for a horizontally
oriented rotating and stratified shear layer from Part 1 with a DNS study that includes
a series of simulations with nearly 1 billion points simulating a shear layer with an
initial Reynolds number of 2400. Section 2 introduces and motivates the mathematical
model and simulation parameter regime. The overall evolution of the mean flow is
summarized in § 3 and the approach towards a final state of zero absolute vorticity is
assessed for anticyclonic rotation. The preceding literature survey shows that rotation
influences the emergence of various instabilities including the inertial instability,
barotropic shear instability, zigzag instability and the buoyancy-induced instability
at zero absolute vorticity found in Part 1. The manifestation of these instabilities
in coherent vortex dynamics is discussed in § 4 and the qualitative differences in
the cases with moderate anticyclonic rotation rates are highlighted. Visualizations of
vorticity are presented in § 5 to illustrate how the vortical signature of the inertial
instability differs from that of the buoyancy instability which occurs when the flow
passes through zero absolute vorticity. Section 6 explores the fluctuating enstrophy
budget terms, paying particular attention to nonlinear vortex stretching and changes
in the baroclinic torque when centreline absolute vorticity is nearly zero. In § 7,
statistics to quantify the turbulent nature of fluctuations such as buoyancy Reynolds
number, skewness of velocity derivative, spectra, and mixing efficiency are discussed.
Conclusions are drawn in § 8.

2. Formulation
The dimensional equations for conservation of mass, momentum, and density for

a Boussinesq fluid in a frame of reference rotating about the vertical axis are given
below with dimensional variables denoted by ∗ (centrifugal acceleration is neglected):

∂u∗i
∂x∗i
= 0, (2.1)
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∂u∗i
∂t∗
+ ∂(u

∗
i u∗j )

∂x∗j
+ εi3k2Ω∗u∗k =−

1
ρ∗0

∂p∗

∂x∗i
− g∗δi3 + ν∗ ∂

2u∗i
∂x∗j ∂x∗j

, (2.2)

∂ρ∗

∂t∗
+ ∂(ρ

∗u∗j )

∂x∗j
= κ∗ ∂

2ρ∗

∂x∗j ∂x∗j
, (2.3)

where ε is the permutation tensor. The density and pressure fields are decomposed in
the following manner:

ρ∗(x∗i , t∗)= ρ∗0 + ρ∗(x∗3)+ ρ ′∗(x∗i , t∗), (2.4a)
p∗(x∗i , t∗)= p∗(x∗2, x∗3)+ p′∗(x∗i , t∗), (2.4b)

where ρ∗ represents the linear background stratification and p∗ is in hydrostatic
and geostrophic balance with the initial density profile (ρ∗0 + ρ∗) and initial mean
velocity profile. The initial mean velocity corresponds to a barotropic hyperbolic-
tangent mixing layer of the form

〈u∗1〉 =
1U∗

2
tanh

(
2x∗2
δ∗ω,0

)
, (2.5)

with linear vertical stratification d〈ρ∗〉/dx∗3, Coriolis parameter f ∗ = 2Ω∗, initial
vorticity thickness δ∗ω,0, and velocity difference 1U∗ as introduced in figure 1.

The non-dimensional variables for this problem are given as

t = t∗1U∗

δ∗ω,0
, xi = xi

∗

δ∗ω,0
, ui = ui

∗

1U∗
, ρ ′ = −ρ ′∗

δ∗ω,0(dρ
∗/dx∗3)

, p′ = p′∗

ρ∗01U∗2 . (2.6)

The following non-dimensional equations for continuity, momentum conservation, and
density are obtained along with relevant non-dimensional parameters:

∂ui

∂xi
= 0, (2.7)

∂ui

∂t
+ ∂(uiuj)

∂xj
+ εi3k2Ωuk =−∂p′

∂xi
+ 1

Re0

∂2ui

∂xj∂xj
− Rib,0ρ

′δi3, (2.8)

∂ρ ′

∂t
+ ∂(ρ

′uj)

∂xj
− u3 = 1

Re0Pr

∂2ρ ′

∂xj∂xj
, (2.9)

Re0 =
1U∗δ∗ω,0
ν∗

, Rib,0 =− g∗

ρ∗0

dρ∗

dx∗3

δ∗ω,0
2

1U∗2 ≈
N∗2

S∗2
,

2Ω0 = Ro−1
0 =−

2Ω∗δ∗ω,0
1U∗

, Pr = ν
∗

κ∗
.

 (2.10)

Here, Prandtl number Pr is taken to be unity for the sake of reasonable computational
cost. 2Ω is defined such that positive (negative) values imply cyclonic (anticyclonic)
rotation; note that this convention differs from Part 1. Dirichlet boundary conditions
are enforced for all flow variables at the transverse boundaries where flow variables
are set to zero except for streamwise velocity u1 which takes the value associated with
the mean velocity of the shear layer. Periodicity is enforced in the streamwise and
vertical directions through Fourier collocation. Boundary influence increases with time
as the shear layer grows laterally.

Initial conditions contain both two- and three-dimensional fluctuations. The two-
dimensional fluctuations are invariant in the vertical direction, and fluctuating fields
are triply periodic with a prescribed spectrum. Fluctuations are confined to the
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Case Re0 Rib,0 Ro0 2Ω0 Pr L1 L2 L3 N1 N2 N3 Np

Ri1A1 2400 1 −1 −1 1 100 50 50 1536 768 768 256
Ri1A2 2400 1 −2 −0.5 1 100 50 50 1536 768 768 256
Ri1A10 2400 1 −10 −0.1 1 100 50 50 1536 768 768 256
Ri1N 2400 1 ∞ 0 1 100 50 50 1536 768 768 256
Ri1C10 2400 1 10 0.1 1 100 50 50 1536 768 768 256
Ri1C2 2400 1 2 0.5 1 100 50 50 1536 768 768 256
Ri0A10 2400 0 −10 −0.1 1 100 50 50 1536 768 768 256
Ri0C10 2400 0 10 0.1 1 100 50 50 1536 768 768 256

Ri1A1Re600 600 1 −1 −1 1 80 40 40 512 256 256 4
Ri1A2Re600 600 1 −2 −0.5 1 80 40 40 512 256 256 4
Ri1A5Re600 600 1 −5 −0.2 1 80 40 40 512 256 256 4
Ri1A10Re600 600 1 −10 −0.1 1 80 40 40 512 256 256 4
Ri0A5Re600 600 0 −5 −0.2 1 80 40 40 512 256 256 4

TABLE 1. Simulation parameters and case names. Case names begin with the initial
Richardson number followed by C, N, or A for cyclonic, no and anticyclonic rotation,
respectively. The following number is the initial Rossby number magnitude if rotation is
present. Lastly, the Reynolds number is included in the label for the low-Reynolds-number
simulations. Li and Ni represent the length of domain and number of computational points,
respectively, in each direction. Np gives the number of MPI processes used for each
simulation.

shear region through multiplication by a Gaussian curve. The two-dimensional
fluctuations have a spectrum of the form E2D(k) ∝ k8 exp[−4(k/k0)

2]. Three-
dimensional fluctuations, on the other hand, have a shallower spectrum of the
form E3D(k) ∝ k4 exp[−2(k/k0)

2]. The two-dimensional fluctuations are approximately
20 times more energetic than the three-dimensional fluctuations and k0 = π. After
initialization, 〈u′iu′i〉 = 0.021 at the centreline.

2.1. Computational method
The numerical algorithm is different from Arobone & Sarkar (2010) which employed
Fourier collocation in the streamwise and vertical directions and second-order
staggered finite differencing in the transverse direction. Here, instead, fourth-order
compact differencing on a collocated grid is performed in the transverse direction.
The following details are the same as in Arobone & Sarkar (2010) and included
for completeness. The Navier–Stokes and density equations are marched using a
third-order Runge–Kutta time scheme. A Rayleigh damping function is used near
the x2 = ±L2/2 boundaries, with a width of approximately 3δω,0, to prevent spurious
reflections. The Poisson equations for pressure and removal of velocity divergence
are solved using the Thomas algorithm. Parallelization is accomplished using message
passing interface. Case-specific computational details are shown in table 1.

2.2. Case study
A total of eight computationally intensive simulations at Re0 = 2400 were performed
as listed in table 1. Six simulations included stable stratification, while the other
two were effectively unstratified with a vertical density gradient but no gravitational
force. Three anticyclonic rotation rates were explored in the stratified cases, while
one was explored in the unstratified cases. The Ri1A10, Ri1A2, and RiA1 cases
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FIGURE 3. (Colour online) Temporal evolution of (a) vorticity thickness δω and (b) non-
dimensional rotation rate 2Ω(t) = 2Ω∗δω(t)/1U for each stratified case at Re0 = 2400. Note
that positive (negative) Ω0 corresponds to cyclonic (anticyclonic) rotation.

explore the inertially unstable regime and zero absolute vorticity state, with Ri1A10
running entirely in the inertially unstable regime, RiA1 starting with zero absolute
vorticity, and Ri1A2 passing through both inertially unstable and the zero absolute
vorticity states. The selection of Rib,0 = 1 for the stratified cases is motivated by the
observation of statistics showing a strong dependence on Rib(t) for Rib(t) & 1 and
self-similar statistical behaviour for Rib(t) & 10 in Arobone & Sarkar (2010). The
value of Rib(t) increases by a factor of nearly 50 in our simulations owing to the
roughly sevenfold increase in shear layer thickness. Therefore the choice of initial
stratification corresponding to Rib,0 = 1 is likely to be sufficient to explore the strongly
stratified regime. Approximately 1 billion points are employed for the Re0 = 2400
cases leading to excellent resolution with at least 5 decades drop in energy spectra
during the evolution of the flow. Five smaller simulations with one third as many grid
points in each direction were also performed at lower Reynolds number. These cases
are used to aid in understanding the far more complex higher-Re simulations.

3. Overall evolution of the mean flow
Figure 3(a) shows that the shear layer width, measured by the vorticity thickness,

grows with increasing time. The difference of shear layer width among the various
cases is not large but, as will be shown later in detail, the evolution of the fluctuations
differs qualitatively in many aspects. Figure 3(b) shows that the magnitude of non-
dimensional rotation rate, 2Ω(t) = 2Ω∗δω(t)/1U∗, increases with time since δω(t)
increases. Thus, rotation exerts increasing control during the course of the simulations.
The stratified case with 2Ω0 =−0.5 exhibits a reduction of growth rate at intermediate
time, passes through the zero absolute vorticity state, and continues to thicken.
Figure 4 shows the evolution of mean velocity in the shear layer for low-Re cases
with 2Ω0 = −0.2 without and with stratification. Figure 4(a) shows that the mean
flow in the case without stratification evolves to a quasi-steady state; this state
corresponds to 〈ω3〉 + 2Ω0 ≈ −0.04. The results are consistent with the mixing of
angular momentum to a zero absolute vorticity state found by Métais et al. (1995)
and suggested by Kloosterziel et al. (2007b) to be the high-Re limit of inertially
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FIGURE 4. (Colour online) The temporal evolution of the mean flow in the shear layer
(a) without and (b) with stratification for cases with Re0 = 600 and with weak anticyclonic
rotation, 2Ω0 =−0.2. (a) Rib,0 = 0, case Ri0A5Re600; b) Rib,0 = 1, case Ri1A5Re600.

unstable flows. Correspondingly, the vorticity thickness stops increasing at late time. In
the stratified 2Ω0 = −0.2 case of figure 4(b), the flow does not become quasi-steady.
The value of δω shows a slight plateau near zero absolute vorticity, but then exhibits
unabated increase.

The reasons for the stratified flow to continue mixing momentum beyond the zero
mean value of absolute vorticity, ωa = ω3 + 2Ω0, are examined. An evolution equation
for mean absolute vertical enstrophy, 〈ωa〉2/2, is

DDT︷ ︸︸ ︷
∂

∂t

[
1
2
〈ωa〉2

]
=

PROD︷ ︸︸ ︷
〈u′2ω′3〉

∂〈ωa〉
∂x2
− ∂

∂x2
[〈ωa〉〈u′2ω′3〉] +

VS MV︷ ︸︸ ︷
〈ωa〉〈ω′ks′k3〉+

DISS︷ ︸︸ ︷
1

Re
〈ωa〉∂

2〈ωa〉
∂x2∂x2

, (3.1)

and its domain-integrated terms are plotted in figure 5. Mean absolute enstrophy is
analysed as opposed to mean relative enstrophy, 〈ω3〉2/2, due to the latter’s explicit
dependence on rotation rate. The nonlinear stretching and tilting term, VS MV, is
also present in the equation for fluctuating vertical enstrophy, 〈ω′23 〉/2, evolving
differently between stratified and unstratified cases. In strongly turbulent flows, this
term is a source of both mean and fluctuating enstrophy, but in the presence of
strong stratification 〈ω′ks′k3〉 is significantly suppressed as the flow becomes quasi-
two-dimensional. The PROD term is an exchange between mean and fluctuating
components of vertical enstrophy. Figure 5(a) shows that, in the unstratified case,
an approximate balance between increase of 〈ωa〉2 by VS MV and reduction by PROD
is found for t > 50 leading to an asymptotic state with DDT approximately zero.
Quasi-two-dimensional flow also acts to increase the magnitude of PROD through
enhanced lateral stirring of vertical vorticity. Additionally, the zero absolute vorticity
instability of Part 1 only emerges in the presence of strong stratification and may be
responsible for the increase in magnitude of PROD when t ≈ 55 in figure 5(b). It is
worth nothing that 2Ω(t = 55) = −1.09 and the centreline absolute vorticity is zero
when t ≈ 46. As will be shown in § 6, the baroclinic production of lateral vorticity
(ω2) helps maintain fluctuating enstrophy beyond the zero absolute vorticity state.
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FIGURE 5. (Colour online) The temporal evolution of integrated enstrophy budget terms (a)
without and (b) with stratification for cases with Re0 = 600 and with weak anticyclonic
rotation, 2Ω0 = −0.2. The terms have been scaled by δ2

ω(t) adjusting for variation due
to lateral spreading of enstrophy: (a) Rib,0 = 0, caseRi0A5Re600; (b) Rib,0 = 1, case
Ri1A5Re600.

4. Dynamics of coherent structures
Coherent vortical structures are isolated using the λ2 criterion of Jeong & Hussain

(1995), defined as the median eigenvalue of the symmetric tensor SikSkj + ΩikΩkj.
Sij and Ωij are the rate of strain and rotation tensors, respectively. Use of λ2

enables straightforward three-dimensional visualization of coherent vortex dynamics
by rendering surfaces where λ2 = ε, with a small negative threshold ε = −0.01 as in
Part 1. The authors have selected λ2 over 1 or Q, which from experience generate
significant false positives in the shear layer, especially in the braid region. Owing
to the large size of datasets, Lagrangian methods of coherent vortex extraction are
prohibitively expensive and were not employed.

4.1. Non-rotating stratified case

Isocontours of λ2 were used by Arobone & Sarkar (2010) to explore coherent vortex
dynamics in a stratified horizontal shear layer. A transition from three-dimensional
incoherent turbulence to coherent quasi-vertical structures to dislocated vortex cores
was observed in their strongly stratified case, A3, with Rib,0 = 1.13. A mechanism
qualitatively similar to the zigzag instability was found to be responsible for slicing
and breaking apart these quasi-vertical coherent vortices that emerged from the soup
of turbulence. Case A3low of Arobone & Sarkar (2010) had very small-amplitude initial
fluctuations, did not develop three-dimensional incoherent turbulence, but did result in
quasi-vertical coherent vortices, the zigzag instability, and vertical slicing at late time
similar to case A3. The evolution of case Ri1NRe600 is similar to case A3low. This
is probably due to the quasi-two-dimensional initial conditions used here that favour
the early formation of coherent structures as opposed to fully three-dimensional as
in Arobone & Sarkar (2010). In case Ri1N, with the same stratification but higher
Re0 = 2400, coherent dynamics are quite similar with vertical length scale associated
with slicing remaining unchanged, but with far greater fine-scale structure in the braid
region.
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FIGURE 6. Snapshots of vertical variation showing the early-time deformation of coherent,
columnar structures in the stratified non-rotating and anticyclonic rotation cases. Isosurfaces
of λ2 for the subdomain x1 ∈ [0, 25], x2 ∈ [−12.5, 12.5], x3 ∈ [0, 12.5]. (a) Non-rotating
case Ri1N at t = 12.3; (b) 2Ω0 = −0.1 case Ri1A10 shown where 2Ω(t = 12.9) = −0.19;
(c) 2Ω0 = −0.5 case Ri1A2 shown where 2Ω(t = 12.6) = −0.96; (d) 2Ω0 = −1 case Ri1A1
shown where 2Ω(t = 6.85)=−1.31.

4.2. Rotating unstratified cases
Both high-Re unstratified simulations with weak rotation (Ri0A10 and Ri0C10) exhibit
a rapid transition to turbulence, with the anticyclonic case appearing considerably
more unstable. The lower-Re unstratified cases show clearer qualitative differences
between cyclonic and anticyclonic cases. The 2Ω0 = −0.1 case begins with quasi-
vertical vortical structures, which shed coherent longitudinal structures until being
completely destroyed by turbulent fluctuations. For 2Ω0 = −0.2, the quasi-vertical
vortices are almost immediately pinched off forming longitudinal structures, as in
Métais et al. (1995), which then become turbulent and the flow gradually transitions
into a fully turbulent state. The cyclonic 2Ω0 = 0.1 case contains quasi-vertical
structures that still shed longitudinal vortices, although they are far less commonplace
than in the anticyclonic cases. Most shedding and destabilization in the cyclonic case
occur later during vortex merging, perhaps indicative of elliptic instability.

4.3. Anticyclonic rotation with stratification
The coherent structures evolve differently among the stratified anticyclonic cases and
even more so with respect to the non-rotating stratified case. Figure 6 shows a section
of the coherent structures in four stratified cases with increasing anticyclonic rotation.
In all cases, the barotropic instability develops leading to columnar vortex cores that
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FIGURE 7. Snapshots of horizontal variation at late time. A network of longitudinal braid
vortices is seen only in the stratified cases with moderate anticyclonic rotation, irrespective of
Re0. Isosurfaces of λ2 for the subdomain x1 ∈ [0, 25], x2 ∈ [−12.5, 12.5], x3 ∈ [0, 12.5] show
the final coherent structures viewed in the negative x3 direction. (a) Non-rotating case Ri1N at
t = 68.9; (b) 2Ω0 =−0.1 case Ri1A10 shown where 2Ω(t = 69.2)=−0.67; (c) 2Ω0 =−0.5
case Ri1A2 shown where 2Ω(t = 64.8) = −2.82; (d) 2Ω0 = −1 case Ri1A1 shown where
2Ω(t = 65.2)=−6.28.

subsequently deform. While figure 6(a–c) contains snapshots from roughly the same
time into the simulation, figure 6(d) is a much earlier snapshot due to the more
rapid deformation of the barotropic modes in the 2Ω0 = −1 case. The fact that the
initial deformation is largest in the 2Ω0 = −1 case points to the importance of the
zero-absolute vorticity instability identified in Part 1. Figures 7 and 8 show coherent
structures via horizontal and vertical snapshots, respectively, from the end of each
simulation whose early-time structures were presented in figure 6.

For Ri1A10, quasi-vertical structures form and quickly develop high-vertical-
wavenumber deformations (k3 ≈ 2.75) as seen in figure 6(b). The corrugated edges
of the vortices, the so-called rib vortices of Kloosterziel et al. (2007a), interact with
nearby vortex cores and are then shed off as coherent braid structures that surround the
quasi-vertical modes. The network of braid vortices grows throughout the remainder
of the simulation, obfuscating extraction of the behaviour underneath from the λ2

visualizations. Figure 7(b) is a horizontal snapshot that reveals fine-scale behaviour
throughout the coherent structures. In the lower-Reynolds-number case, Ri1A10Re600,
deformations of the vortex cores are also observed with a similar wavenumber
(k3 ≈ 2.67), but coherent braid structures do not emerge after the vortex edges are
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FIGURE 8. Isosurfaces of λ2 for the subdomain x1 ∈ [0, 25], x2 ∈ [−12.5, 12.5], x3 ∈ [0, 12.5]
showing coherent structures in the stratified cases viewed in the positive x2 direction.
(a) Non-rotating case Ri1N at t = 68.9; (b) 2Ω0 = −0.1 case Ri1A10 shown where
2Ω(t = 69.2) = −0.67; (c) 2Ω0 = −0.5 case Ri1A2 shown where 2Ω(t = 64.8) = −2.82;
(d) 2Ω0 =−1 case Ri1A1 shown where 2Ω(t = 65.2)=−6.28.
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shed. It is important to note that the k1 = 0.44 (dominant KH wavelength) inertial
mode is not excited until 2Ω(t) ≈ −0.2. This may explain the low deformation of the
vortices in figure 6(b) compared to 6(c) and 6(d) which have more rapid rotation rates.
The range of unstable k1 values increases as the anticyclonic rotation rate increases
as shown in figure 3(b,e) from Part 1. Even though the k1 = 0 mode is unstable for
−1< 2Ω < 0, higher streamwise wavenumbers (in the shear layer high-k1 modes arise
owing to the initial barotropic instability or later vortex interactions) require more
rapid rotation for vertical destabilization.

The Ri1A2 case exhibits deformations in the quasi-vertical vortices, with a higher
wavenumber (k3 ≈ 4). These deformations distort the quasi-vertical modes more
than in the weaker anticyclonic rotation case, especially near the zero absolute
vorticity state, after which incoherent vorticity fluctuations appear around the
‘zigzagging’ vortex modes. Figure 6(c) shows the Ri1A2 case shortly before the zero
absolute vorticity state, when 2Ω(t)=−0.96. Interestingly, coherent longitudinal braid
structures emerge in case Ri1A2 shortly later, although not nearly as intensely as
in Ri1A10, even though 2Ω(t) < −1 signifying that the flow is globally inertially
stable. This is surprising given the fact that these structures have been traditionally
associated with the inertial instability (Métais et al. 1995; Kloosterziel et al. 2007a).
Case Ri1A2Re600 shows similar behaviour to the higher-Re case at early time, but
incoherent fluctuations are less prevalent and the flow is quickly stabilized without
the formation of coherent braid vortices. The resulting network of vortices interact
minimally except when the separation distance is small enough that local shear is of
comparable order to the coordinate system rotation rate.

High-vertical-wavenumber (k3 ≈ 2.5) deformations are also observed earlier in the
Ri1A1 case (figure 6d), which deform the quasi-vertical modes quickly compared to
the weaker anticyclonic cases. No significant small-scale incoherent structure emerges
and vortex evolution is similar to that of Ri1A2Re600 at late time, where vortices
advect passively and only interact significantly once they are in very close proximity
with one another. The qualitative similarities between cases Ri1A1 (high rotation and
high Re) and Ri1A2Re600 (moderate rotation and low Re) are likely to be due to the
fact that the increased destabilization due to moderate rotation in case Ri1A2Re600
is nearly offset by the increased stabilization of viscosity. At higher initial rotation,
2Ω0 = −1, the coherent vortex cores in the lower-Re case, RiA1Re600, evolved
similarly to those at higher Re except with smoother vorticity isocontours and less
small-scale content.

The structures tend to deform in the x1–x3 plane near the zero absolute vorticity
state, 2Ω(t)=−1, for both Ri1A2 and Ri1A1. This corresponds to formation of small-
scale ω′2, consistent with the linearized inviscid evolution equations at the centreline
for the zero absolute vorticity state, given in equation (5.2) of Part 1:

∂ω′1
∂t
=
( 〈s12〉

2
+Ω0

)
ω′2 − Rib,0

∂ρ ′

∂x2
,

∂ω′2
∂t
= Rib,0

∂ρ ′

∂x1
. (4.1)

Streamwise density gradients efficiently generate ω′2 near this state due to the lack
of influence of mean shear on the evolution equation for lateral vorticity fluctuations.
Alternating filaments of ω′2 surround the columnar vortices and shear them rather
quickly.

Vertical sections at later times show that coherent structures in the weakly and
moderate anticyclonic cases RiA10 and Ri1A2 evolve quite differently from one
another, but with a few key similarities. Both cases result in a network of thin coherent
longitudinal vortices as seen in figure 8(b,c), with the network being more prevalent
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FIGURE 9. Isosurfaces of λ2 for the subdomain left of the x2–x3 midplane showing the effect
of cyclonic rotation on coherent structures in the stratified cases: (a) 2Ω0 = 0 case Ri1N at
t = 68.9; (b) 2Ω0 = 0.1 case Ri1C10 where 2Ω(t = 69.1) = 0.65; (c) 2Ω0 = 0.5 case Ri1C2
where 2Ω(t = 69.1)= 3.46.

in the weaker anticyclonic case with 2Ω0 = −0.1. Initially, in both cases, vortices
deform in a similar manner with a small vertical length scale. Later, however, the large
quasi-vertical structures do not break apart in the weakly anticyclonic case, remaining
columnar, while breaking apart in the moderate anticyclonic case with 2Ω0 =−0.5.

4.4. Cyclonic rotation with stratification
The evolution of coherent vortices is very similar for the non-rotating stratified case
and the cyclonic stratified cases, and strongly contrasts with the anticyclonic cases.
Vertical slicing is slightly less dramatic in the cyclonic cases than in the non-rotating
case, but there is a clear one-to-one matching of vortical structures between the three
cases throughout the duration of the simulations. Figure 9(a–c) illustrates these points,
clearly showing coherent structures at the end of each simulation. The cleaner nature
of the coherent structures in the cyclonic cases is also noteworthy.

5. Vortical signature of instabilities
The linear analysis of Part 1 suggests that the inertial instability and zero absolute

vorticity mechanism generate horizontal vorticity fluctuations in distinct manners.
Figures 10(a) and 10(b) illustrate the differences between the nonlinear evolution of
the inertial instability and the zero absolute vorticity instability. Figure 10(a) contains
only thin sheet-like vortex structures associated with the inertial instability, while
figure 10(b) contains both thin sheet-like structures and arrays of alternating vorticity
which are prevalent near the zero absolute vorticity state. The sheet-like structures
take more time to induce local shear instability than the vortex arrays which quickly
overturn generating small-scale vorticity.

Case Ri1A10 experiences significant destabilization owing to the nonlinear evolution
of the inertial instability as illustrated in figure 11. The inertial instability is manifested
as coherent longitudinal vortices in the braid region, as seen in the previous section,
and thin sheet-like vortex structures in the core region. These sheet-like vortex
structures are susceptible to rolling up at later times as seen in figure 11, which
shows the transition from sheet-like structures of ω2 to KH billows in several
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FIGURE 10. (Colour online) Laplacian filtered ω2 fluctuations given for a segment of the
x1–x3 midplane illustrating differences between instabilities in the (a) weak anticyclonic and
(b) moderate anticyclonic cases: (a) 2Ω0 =−0.1 case Ri1A10 where 2Ω(t = 21.89)=−0.26;
(b) 2Ω0 =−0.5 case Ri1A2 where 2Ω(t = 13.6)=−1.01.

locations, which are circled. Figures 11(a) and 11(b) correspond to 2Ω(t) = −0.40
and 2Ω(t) = −0.56, respectively, implying that rollup occurs near the most linearly
unstable state of 2Ω(t)=−0.5.

The horizontal vorticity components show dramatic differences with respect to
system rotation in the stratified simulations, and are by far the most active in the
Ri1A2 and Ri1A10 cases. Vertical layering is most dramatic in Ri1A2 at later times,
even though the effect of rotation is stabilizing, while the vorticity fields appear most
disordered in Ri1A10.

6. Fluctuating enstrophy evolution
Figure 12 shows the evolution of fluctuating enstrophy components in each of the

high-Re stratified cases. When 2Ω0 = 0.1, 0.5 and −1, enstrophy is primarily vertical,
while horizontal enstrophy dominates for 2Ω0 = −0.1 and −0.5. In order to quantify
the processes responsible for modifying enstrophy components, fluctuating enstrophy
budgets are computed. Equations are derived for the evolution of x1–x3 plane-averaged
fluctuating enstrophy components and given below for the horizontal shear layer (no
summation over Greek indices):

∂〈ω′αω′α〉
∂t

=−2〈ω′αu′2〉
∂〈ωα〉
∂x2
− ∂〈ω

′
αω
′
αu′2〉

∂x2
+ 2(〈ω3〉 + 2Ω0)〈ω′αs′α3〉

+ 2〈ω′αω′j〉〈sαj〉 + 2〈ω′αω′js′αj〉 + εαj32Ω0〈ω′αω′j〉 +
1

Re0

∂2〈ω′αω′α〉
∂xj∂xj

− 2
Re0

〈
∂ω′α
∂xj

∂ω′α
∂xj

〉
− εαj32Rib,0

〈
ω′α
∂ρ ′

∂xj

〉
. (6.1)

The physical meaning of each term is as follows:

rate of change of fluctuating enstrophy (DDT)
∂〈ω′αω′α〉
∂t

;

production of fluctuating enstrophy (PROD) −2〈ω′αu′2〉
∂〈ωα〉
∂x2
;
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FIGURE 11. Plots of Laplacian filtered ω2 from the Ri1A10 case with 2Ω0 = −0.1 showing
development of fine-scale KH instabilities (circled) and vortical structure as the flow passes
through the most inertially unstable regime (2Ω(t) = −0.5): (a) 2Ω(t = 48.94) = −0.40;
(b) 2Ω(t = 61.22)=−0.56.

transport of fluctuating enstrophy by −∂〈ω
′
αω
′
αu′2〉

∂x2
;

velocity fluctuations (TR)

stretching/tilting of mean absolute 2(〈ω3〉 + 2Ω0)〈ω′αs′α3〉;
vorticity by fluctuating strain (VS MV)
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FIGURE 12. (Colour online) Temporal evolution of the three integrated enstrophy
components in stratified cases where Rib,0 = 1 and Re0 = 2400.

stretching/tilting of fluctuating 2〈ω′αω′j〉〈sαj〉;
vorticity by mean strain (VS MS)

stretching/tilting of fluctuating vorticity 2〈ω′αω′js′αj〉;
by fluctuating strain (VS F)

effect of coordinate system rotation (ROT) εαj32Ω0〈ω′αω′j〉;

viscous diffusion of enstrophy fluctuations (DIFF)
1

Re0

∂2〈ω′αω′α〉
∂xj∂xj

;

viscous dissipation of enstrophy fluctuations (DISS) − 2
Re0

〈
∂ω′α
∂xj

∂ω′α
∂xj

〉
;

fluctuating baroclinic torque (BC) −εαj32Rib,0

〈
ω′α
∂ρ ′

∂xj

〉
.
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FIGURE 13. (Colour online) Temporal evolution of integrated vertical enstrophy budgets in
stratified cases where Rib,0 = 1. (a) 2Ω0 = 0 case Ri1N; (b) 2Ω0 = −0.1 case Ri1A10; (c)
2Ω0 = −0.5 case Ri1A2; (d) 2Ω0 = −1 case Ri1A1. The 2Ω0 = 0.1 and 0.5 cases are very
similar to (a) and not shown.

The transport of fluctuating enstrophy and viscous diffusion terms integrate over
the domain to zero when there are no boundary fluxes and are not discussed. In
our analysis we often combine the stretching of fluctuating vorticity by mean strain
term (VS MS) with the coordinate system rotation term (ROT) to reduce clutter in
the enstrophy component budgets. VS MS is a source term while ROT transfers
fluctuating enstrophy between horizontal components. In some cases the nonlinear
vortex stretching (VS F) term is merged with DISS, also to reduce clutter; this term
can be thought of as the imbalance between dissipation and enstrophy transfers from
larger to smaller scales. Large magnitudes of VS F and DISS are suggestive of strong
nonlinearity, a forward enstrophy cascade, and turbulence.

Initially, we focus our attention on vertical fluctuating enstrophy budgets, which are
not directly influenced by buoyancy. Vertical enstrophy budgets are plotted in figure 13
for stratified cases with 2Ω0 = 0, −0.1, −0.5 and −1. Common features are observed
at late time between the 2Ω0 =−1 case and the non-rotating and cyclonic (not shown,
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FIGURE 14. (Colour online) Temporal evolution of the 〈ω′2ω′2〉 budget from the anticyclonic
cases with 2Ω0 = −0.5, Rib,0 = 1. The budget is calculated at the centreline and the plot
zooms in on the early evolution. The rate of change and baroclinic torque terms are filtered
to remove the influence of N oscillations. Note that VS MS = VS MS + ROT and VS F =
VS F + DISS for compactness. (a) Re0 = 600 case Ri1A2Re600; (b) Re0 = 2400 case Ri1A2.

but similar to non-rotating) cases. Here, the dominant balance is between PROD and
DISS. This partially explains why snapshots of vertical vorticity (not shown) are
significantly cleaner in these cases than in the anticyclonic cases with weaker rotation.
Nonlinear stretching and tilting play a far greater role in the evolution of vertical
enstrophy fluctuations in the weak and moderate anticyclonic stratified cases, even at
later time when 2Ω(t) <−1. Thus, for cases Ri1A10 and Ri1A2 there are time periods
when the budget is dominated by VS F and DISS terms, but in the Ri1A1, Ri1C10 and
Ri1N cases VS F never dominates.

The 2Ω0 = −0.5 case passes through 2Ω(t) = −1 corresponding to zero absolute
vorticity. Through figures 14–16 we demonstrate that the baroclinic term (BC) plays an
important role in maintaining vorticity fluctuations beyond the zero absolute vorticity
state despite the inertial stability of the flow during this stage.

Figures 14(a) and 14(b) show local lateral fluctuating enstrophy (〈ω′2ω′2〉) budgets
from the low- and high-Re0 stratified 2Ω0 = −0.5 cases at the inflection point,
focusing on early time evolution. Both plots show the BC term out of phase with
the linear VS MV and VS MS (actually VS MS + ROT) terms, transport advecting
enstrophy away from the centreline, and VS F (actually VS F + DISS) implying a
cascade of enstrophy from large scales to small. The zero absolute vorticity state is
reached in the high-Re case (figure 14b) when t ≈ 13.4. Shortly after, when t ≈ 14,
baroclinic torque (BC) changes sign in the 〈ω′2ω′2〉 budget, implying destabilization
of lateral fluctuating enstrophy by density fluctuations. This is consistent with the
dynamics of the zero absolute vorticity mode in figure 11 of Part 1, where density
gradients act against ω′1 while acting to strengthen ω′2. Interestingly, we see the BC,
VS MV and VS MS (actually VS MS + ROT in figure 14) terms change signs
in the local 〈ω′2ω′2〉 budget at almost the same time (t ≈ 13.4 in figure 14b). The
VS MV and VS MS (VS MS + ROT in figure 14) terms are exactly zero when
local absolute vorticity is zero because 〈s12〉 − Ω0 = −(〈ω3〉 + 2Ω0)/2 = 0. The DDT
term of figure 14(b) shows a considerable delay in crossing the zero value relative
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FIGURE 15. (Colour online) Enstrophy component budgets from the 2Ω0 = −0.5, Rib,0 = 1
case Ri1A2 shown shortly after the zero absolute vorticity state. Here, t = 18.08 and
2Ω(t) ≈ −1.12. Note that VS MS = VS MS + ROT for compactness. (a) 〈ω′1ω′1〉 budget;
(b) 〈ω′2ω′2〉 budget.

to figure 14(a), i.e. stabilization of lateral enstrophy is delayed at higher Reynolds
number. Perhaps at still higher Re, destabilization could be delayed even further into
the inertially stable regime.

In figures 15(a) and 15(b), lateral profiles of 〈ω′1ω′1〉 and 〈ω′2ω′2〉 budgets are
shown for the stratified 2Ω0 = −0.5 case shortly after the zero absolute vorticity
state. Although the nonlinear vortex stretching term (VS F) is dominant in the budget
for 〈ω′2ω′2〉, it is almost cancelled by the other non-baroclinic terms, particularly the
dissipation. Consequently, the rate of change curve (DDT) in figure 15 for lateral
fluctuating enstrophy nearly follows the baroclinic (BC) term, which was predicted by
(4.1), which was derived assuming small horizontal gradients, zero absolute vorticity,
and neglected nonlinearity and viscosity.

Interestingly, in figure 16(a,b), nonlinear vortex stretching and tilting are far more
important in lateral enstrophy evolution than streamwise enstrophy, where stretching
and tilting is nearly zero around and before the zero absolute vorticity state. For
weak and moderate anticyclonic rotation rates there are times when baroclinicity is a
net source of horizontal enstrophy, specifically throughout much of the 2Ω0 = −0.5
case. The DDT term in the lateral enstrophy budget in figure 16(b) suggests
peak destabilization occurring in the stratified 2Ω0 = −0.5 case when 35 . t . 40
or 2Ω(t) ∼ −1.75. In an attempt to better understand why enstrophy fluctuations
grow so far into the inertially stable regime, (4.1) is manipulated to obtain the
following evolution equation for fluctuating lateral enstrophy, neglecting the influence
of stratification:

D̄2

D̄t2
[〈ω′2ω′2〉] = −4Ω0(2Ω0 + 〈ω3〉)〈ω′2ω′2〉. (6.2)

We concentrate on fluctuating lateral enstrophy because it begins to decay before
both the fluctuating streamwise enstrophy and the 〈ω′1ω′2〉 correlation. Understanding
the mechanism responsible for delayed decay of lateral fluctuating enstrophy may
explain why dissipation and nonlinearity remain strong so long after passing through
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FIGURE 16. (Colour online) Temporal evolution of integrated horizontal enstrophy budgets
for the moderate anticyclonic case Ri1A2 with 2Ω0 = −0.5 and Rib,0 = 1. The rate of change
and baroclinic torque terms have been filtered to lessen the influence of N oscillations. Note
that VS MS = VS MS + ROT for compactness. (a) 〈ω′1ω′1〉 budget; (b) 〈ω′2ω′2〉 budget.

the absolute zero vorticity state. Based on the present simulation data, mean centreline
vorticity may be approximated by 〈ω3〉(t) ≈ (t/13+ 1)−1, and lateral fluctuating
enstrophy may be approximated as growing linearly with time. Integrating (6.2) from
the beginning of the simulation until time t∗ and setting the result equal to zero gives
the time when 〈ω′2ω′2〉 reaches peak magnitude:∫ t∗

0
2
(
−1

2
+ 1

t/13+ 1

)
t dt = 0. (6.3)

Equation (6.3) is satisfied when t∗ ≈ 21.1, long before the t∗ ≈ 37 when 〈ω′2ω′2〉 is
found to achieve its peak in case Ri1A2 as discerned by where the rate of change
curve crosses the time axis in figure 14(b). Thus, destabilization continues beyond
the time predicted by linear, unstratified analysis. An interesting point to note is that
the baroclinic and rate of change terms in the lateral fluctuating enstrophy budget in
figure 14(b) cross when t ≈ 21, i.e. at this time the increase in horizontal enstrophy
is entirely due to the production by baroclinicity (BC). The BC term continues to
be positive and grow after t = 21 while the sum of all the other terms continues
to be negative and a sink. Clearly, the generation of ω2 via baroclinic torque once
2Ω(t)&−1 helps explain the delayed stabilization of horizontal enstrophy.

6.1. Rapid rotation regime

Figures 17(a) and 17(b) show the streamwise and lateral fluctuating enstrophy budgets
throughout the duration of case Ri1A1 with initial 2Ω0 = −1. The non-dimensional
rotation rate, 2Ω(t), increases by a factor of 7 during the simulation. Relative to the
moderate rotation rate case with initial 2Ω0 =−0.5, the terms in the enstrophy budget
are smaller in this case by almost an order of magnitude. When rotation is strong
(2|Ω(t)| � 1) the baroclinic terms are out of phase with the terms corresponding
to stretching by mean strain and coordinate rotation. This is a consequence of flow
in thermal wind (geostrophic and hydrostatic) balance, which when applied to the
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FIGURE 17. (Colour online) Temporal evolution of integrated horizontal enstrophy budgets
in the rapid anticyclonic case Ri1A1 where 2Ω0 = −1 and Rib,0 = 1. The rate of change and
baroclinic torque terms have been filtered to lessen the influence of N oscillations. Note that
VS MS = VS MS + ROT for compactness. (a) 〈ω′1ω′1〉 budget; (b) 〈ω′2ω′2〉 budget.

momentum equations gives

2Ω0
∂u′1
∂x3
∼ Rib,0

∂ρ ′

∂x2
, −2Ω0

∂u′2
∂x3
∼ Rib,0

∂ρ ′

∂x1
, (6.4)

2Ω0(s
′
13 + r′13)∼ Rib,0

∂ρ ′

∂x2
, 2Ω0(s

′
23 + r′23)∼−Rib,0

∂ρ ′

∂x1
, (6.5)

2Ω0ω
′
1s′13︸ ︷︷ ︸

A1

+Ω0ω
′
1ω
′
2︸ ︷︷ ︸

B1

∼ Rib,0ω
′
1

∂ρ ′

∂x2︸ ︷︷ ︸
C1

, 2Ω0ω
′
2s′23︸ ︷︷ ︸

A2

−Ω0ω
′
1ω
′
2︸ ︷︷ ︸

B2

∼−Rib,0ω
′
2

∂ρ ′

∂x1︸ ︷︷ ︸
C2

. (6.6)

When rotation is rapid, the tilting of planetary vorticity terms (A1 and A2) tend to
be small relative to the coordinate system rotation terms (B1 and B2). The rotation
term acts to transfer enstrophy from one horizontal component to another, but does
not generate or destroy enstrophy. Owing to balance with the rotation term in rapidly
rotating strongly stratified flow, baroclinic torque also acts to transfer enstrophy from
one horizontal component to the other. In the present flow, ω′1ω

′
2 tends to be positive

because mean strain increases horizontal enstrophy via vortex stretching, as in term
VS MS in (6.1). Baroclinicity therefore should transfer from streamwise to lateral
enstrophy as observed here, consistent with figure 12 of Part 1 with negative rotation
rate.

7. Quantifying fluctuations
The dynamics of the stratified cases differ greatly from one another owing to

differences in system rotation. Significant disorder is observed in the vorticity and
scalar (not shown) fields when rotation is moderate and anticyclonic. In this section,
the primary focus will be on quantitative differences between the stratified high-
Re cases with an emphasis on metrics that quantify the nature of turbulence. For
the stratified cases, the centreline buoyancy Reynolds number, ReB = ε(x2 = 0)/νN2
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FIGURE 18. (Colour online) (a) Buoyancy Reynolds number and (b) the ratio of dissipation
of potential energy to dissipation of both kinetic and potential energies versus time for the
stratified cases.

where ε = 2ν〈s′ijs′ij〉, is plotted in figure 18(a). The 2Ω0 = −0.1 and −0.5 cases are
much more dissipative, but the buoyancy Reynolds number does not exceed unity. The
2Ω0 = −1, 0.1 and 0 cases have similar magnitudes of ReB with the 2Ω0 = −1 and
0.1 cases being remarkably similar. The low values of ReB in the weak and moderate
anticyclonic cases contrast with evidence presented in the prior sections that the flow
in these cases has a plethora of small-scale activity and that nonlinear terms are very
important in enstrophy budgets.

Although values of ReB are quite low, in figure 18(b) we see that dissipation of
potential energy, ερ , is the same order as dissipation of kinetic energy, ε, for the
weak and moderate anticyclonic stratified cases. The high values are suggestive of
high mixing efficiency for these flows, while lower mixing efficiency is expected
for cyclonic and/or rapid rotation. The values for the non-rotating stratified case at
Re0 = 2400 are greater than the lower-Re0 stratified case of Basak & Sarkar (2006) as
well as case Ri1NRe600 with Re0 = 600 simulated here. Evidently, strongly stratified
non-rotating flows can also have strong vertical mixing if the Reynolds number is
sufficiently large as hypothesized previously (Riley & de Bruyn Kops 2003). We
also explored the behaviour of Sk, the skewness of ∂u′1/∂x1, which gives information
relating to vortex stretching and energy transfer between scales. Note that isotropic
unstratified turbulence has Sk ∼ −0.45. For Ri0A10 and Ri1A10 the skewness is
observed to be −0.44 and −0.29, respectively, at the end of the simulation. The
skewness of Ri1N and Ri1A1 is very different, taking the values 0.16 and 0.38,
respectively. Therefore it is reasonable to conclude from the specific metric of
skewness of ∂u′1/∂x1 that, at the high stratifications considered here, the high-rotation
cases are not turbulent in the sense of three-dimensional turbulence in a homogeneous
fluid. The anticyclonic cases with weak rotation, however, are most likely to be
turbulent in that sense.

The quasi-two-component nature of the fluctuations in the stratified cases is shown
in figures 19(a) and 19(b) while density variance is shown in figure 19(c). Vertical
turbulent kinetic energy (TKE) is typically about two orders of magnitude smaller
than horizontal TKE. The largest vertical TKE is observed for the weakly and
moderately anticyclonic cases, while the rapidly rotating anticyclonic case exhibits
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FIGURE 19. (Colour online) Integrated components of (a) horizontal and (b) vertical
turbulent kinetic energy in addition to (c) density variance.

the smallest vertical TKE. Other quantities suggestive of turbulence are viscous
dissipation and vortex stretching which are not shown, but give a general trend of
strong destabilization initially for the anticyclonic cases with strong stabilization later
in the 2Ω0 =−1 case.

Figure 20 shows the streamwise spectra at the end of each simulated case. As stated
in § 2, initial spectra are identical in all cases. In general, the unstratified cases have
the most energy at the smallest scales and the stratified non-rotating, cyclonic and
strongly anticyclonic cases contain the least. The weaker anticyclonic stratified cases
have small-scale energy at levels between the unstratified and other stratified cases.
Case Ri1A2 shows less energy in the intermediate wavenumbers than the more stable
cases while still having significant energy in the smallest scales. This is likely to be
due to the stabilizing effect of rotation on larger scales once t & 13 and active fine
scales maintaining energy at the expense of the intermediate scales.

8. Conclusions
Part 1 investigated the three-dimensional instability of a stratified and rotating

horizontally oriented shear layer with a hyperbolic-tangent velocity profile. The present
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FIGURE 20. (Colour online) Plots of streamwise spectra at the end of each high-Re0
simulation.

work, Part 2, is an exploration of the nonlinear evolution of the shear layer for
|2Ω| ∼ O(1) focusing on strongly stratified flow with Rib(t) > 1. The cases have a
Reynolds number based on vorticity thickness, initially at Re0 = 2400, that increases
to approximately Re = 16 800 at the end of the simulations, and are simulated using
nearly 1 billion grid points. Although, cases with a lower Re0 = 600 are also simulated,
the bulk of the presented results pertain to the higher-Re series.

Visualizations of coherent vortex dynamics demonstrated that the qualitative
differences between anticyclonic and cyclonic rotation at weak rotation persist in cases
with strong stratification and also showed the importance of the buoyancy-induced
instability, a modified barotropic mode at zero absolute vorticity, that was found in
Part 1. During the initial evolution, the quasi-vertical vortices deform the fastest in the
state with zero absolute vorticity at the centreline, and next fastest in the 2Ω0 = −0.5
case. This implied that the loss of cyclostrophic balance when 2Ω(t) = −1 is more
destabilizing to vortex cores than the initial influence of the inertial instability. The
stratified 2Ω0 = −1 case shows deformation of the barotropic modes along the x1–x3

plane, consistent with the formation of lateral vorticity, ω2, by baroclinic effects when
the absolute vorticity is zero. Vorticity dynamics show secondary KH shear instabilities
during the evolution of the inertial instability when 2Ω(t) ≈ −0.5. Also, the zero
absolute vorticity instability possesses a vorticity signature distinct from the inertial
instability.

As the 2Ω0 = −0.1 and −0.5 cases progressed, a network of braid vortices formed
and remained throughout the duration of both cases, even though 2|Ω(t)| attained
values as large as 2.7. The cyclonic rotation cases with 2Ω0 = 0.1 and 0.5 did not
show such braid vortices and, instead, exhibited behaviour very similar to the non-
rotating case, but with vertical variability suppressed with increasing cyclonic rotation.
The simulations at Re0 = 600 and Rib,0 = 1 exhibit initial deformation of the vortex
cores similar to that at higher Re but, in strong contrast, do not show development of a
network of braid vortices.

The shear layer thickens in the cross-stream direction owing to barotropic
instabilities and turbulence. In the cases without stratification and with anticyclonic
rotation, the thickening of the shear layer reduces to zero when the mean absolute
vorticity approaches zero, consistent with the finding of Métais et al. (1995) and
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the arguments of Kloosterziel et al. (2007a). In contrast, the stratified case continues
to thicken beyond the zero absolute vorticity state. The enhanced horizontal stirring
by the quasi-two-dimensional dynamics in the stratified case combined with the
presence of the zero absolute vorticity instability and associated baroclinic generation
of enstrophy fluctuations allows continued reduction of horizontal mean shear by
turbulent fluctuations.

Fluctuating enstrophy statistics elucidated dynamically distinct features of the
various rotation regimes. Horizontal enstrophy dominated in anticyclonic cases with
weak rotation (2Ω0 = −0.1,−0.5). Generation of horizontal enstrophy by nonlinear
vortex stretching was substantial relative to the other terms in all cases; generation
by vertical vortex stretching was only significant for intermediate rotation rates
(−0.5 & 2Ω(t) & −3). Baroclinic torque changed from a sink to a source of ω′2
fluctuations immediately after passing through the zero absolute vorticity state, as
expected from the behaviour of linear barotropic modes in Part 1. Examination of
the balance of terms in the transport equation for ω′2 shows the important role of
baroclinic production in allowing vorticity fluctuations to intensify after passing into
the inertially stable regime.

The simulations are diagnosed for the state of velocity fluctuations. While the
enstrophy budgets indicate that the flow is turbulent, buoyancy Reynolds numbers
are very low, never exceeding unity even for the most unstable stratified cases.
Mixing efficiency, inferred from dissipation of TKE and TPE, tends towards values
on the order of 45 % in the high-Reynolds-number stratified series when rotation is
destabilizing, somewhat smaller values in the case without rotation, and significantly
lower values for stabilizing rotation. Skewness of velocity derivative is also suggestive
of nonlinearity associated with three-dimensional turbulence in the cases with
moderate anticyclonic rotation. All stratified cases with or without rotation are in
a high-stratification regime in the sense of being quasi-two-component, with more
than 95 % of turbulent kinetic energy being horizontal. Lastly, streamwise spectra are
much shallower for the inertially unstable cases, albeit not nearly as shallow as the
unstratified cases.
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